Review and Synthesis
Print
Review and Synthesis
South American terrestrial biomes as geocomplexes: a geobotanical landscape approach
expand article infoGonzalo Navarro, Federico Luebert§, José Antonio Molina|
‡ Universidad Católica Boliviana “San Pablo”, Cochabamba, Bolivia
§ Universidad de Chile, Santiago, Chile
| Universidad Complutense de Madrid, Madrid, Spain
Open Access

Abstract

The classic and current perception of biome in its various meanings is fundamentally based on vegetation types that are considered as discrete or independent and fragmented entities in the landscape. Vegetation units are characterized by their physiognomy, which is based on the dominant life forms and mainly determined by climatic conditions. However, vegetation units are associated and mutually interacting at a landscape level. They are determined by local or regional, climatic, topographic and edaphic gradients within a given territory or geographic area. In this work, we propose a new conceptual and methodological approach aiming to better understand the biome concept in a landscape framework, developing ideas already partially advanced by us. In this sense, we consider the biome as a landscape complex (geocomplex), that spatially includes one to several vegetation geoseries which, in turn, each comprise the following possible geomorphologically linked vegetation series: i) the potential natural climatophilic vegetation (zonal vegetation) and their seral successional stages which occur repeatedly in the landscape; ii) edapho-xerophyllous vegetation (azonal vegetation such as occurs on rocky outcrops or sandy soils); and iii) edapho-hygrophilic vegetation (azonal vegetation such as flooded vegetation on river banks). Based on surveys and field data (more than ca. 300 transects) obtained by the authors in most South American countries from 1990 to the present, 33 South American geocomplex biomes and 16 macrobiomes were identified and synoptically characterized, through graphic general zonation models (phyto-topographic type-profiles) extrapolated from numerous observations along representative bioclimatical, geomorphological and biogeographically stratified transects. Field data and transect-plots are currently being processed to be included into the “GIVD database”.

Taxonomic reference: Tropicos.org, Missouri Botanical Garden (https://tropicos.org) [accessed 1 Feb 2023].

In Memoriam: Salvador Rivas-Martínez

Keywords

biome, catena, geocomplex, geoseries, South America, zonation

Introduction

Biomes are large-scale ecosystems, including all the biological diversity found within their boundaries, as well as the ecological and evolutionary processes taking place at the different levels of biological organization, from genes to landscapes. Recent major reviews of the biome concept (Mucina 2018; Faber-Lagendoen et al. 2020; Hunter et al. 2021; Navarro and Molina 2021; Loidi et al. 2022) largely agree on this or a similar definition.

The actual delimitation of biomes, however, has been largely based on zonal vegetation physiognomy as defined by dominant life forms, the regional climate and zonal soils (e.g., Walter and Box 1976; Dinerstein et al. 2017). Recently, functional or ecofunctional traits have been incorporated into the biome definition (e.g., Keith et al. 2020, 2022). The formal delimitation of biomes based on the zonality/azonality framework was largely developed by Walter (1954, 1970, 1976; see Walter and Box 1976; Walter and Breckle 1985–1989). The Walter approach advocates the delimitation of so-called zonobiomes. To this end, zonal and azonal vegetation are treated separately and only zonal vegetation and its relationship to the regional climate is considered in the delimitation of zonobiomes. Azonal vegetation forms other substrate-determined biomes, the so-called pedobiomes (see for example Walter and Box 1976). Furthermore, mountain ecosystems are also excluded from the concept of zonobiomes and are classified as a different class of biomes, the orobiomes. All kinds of biomes (zonobiomes, pedobiomes and orobiomes) are hierarchically arranged and ultimately refer back to biotic communities, which in turn can be subdivided into synusia (Walter and Box 1976).

While a given territory is governed by the presence of a zonobiome, many kinds of biomes may coexist and alternate in the landscape. Mucina (2018) appears to suggest that since the elevational gradients are dependent on regional climatic conditions, orobiomes may be accommodated in a simpler scheme of zonobiomes. However, Mucina (2018) does not totally discard the concept of pedobiomes (he called them azonal biomes) and seems to promote the zonality/azonality framework to define biomes, as becomes clear in his later works (see for example Macintyre and Mucina 2021). One of the problems of the zonality/azonality concept is that some azonal communities may also depend on regional climatic conditions, which complicates the application of that framework. A solution to this problem has been the recognition of intrazonal communities, which in spite of their dependence on substrate conditions, range only within the boundaries of one zonal biome (Mucina et al. 2016). This shifts the conceptual problem to the distinction between azonal and intrazonal communities, which turns out to be scale-dependent (i.e., relative to the spatial scale at which a biome has been defined). While there have been some attempts to discuss the subject of azonality and intrazonality (e.g., Sieben 2019), to our knowledge no in-depth conceptual review of these concepts and their implications has yet been proposed.

Different plant communities in a given geographical area are associated and mutually interactive in the landscape depending on the environmental gradients determined by the climate, topography, geoforms and soils. This spatial association of plant communities has a deep eco-functional meaning, since it expresses recognizable iterative patterns, and the geochemical flows of water and nutrients (Glazovskaya 1963). Each territory has its own hydrogeochemical characteristics, determining the spatial arrangement of zonal and azonal (or intrazonal) plant communities. These sets of spatially arranged vegetation types correspond to territorial vegetation complexes and specifically constitute the biomes (Navarro and Molina 2021). Since this concept differs from the traditional Walterian biome concept (see Mucina 2018), in which the zonal/azonal framework is employed as an initial criterion to distinguish biomes, it might be more appropriate to call them geobiomes or geocomplex biomes.

This idea of biomes as geobiomes has its roots in the classic Russian geographic, edaphic and geochemical landscape schools (e.g., Gerasimov 1946; Perel’man 1960, 1967; Glazovskaya 1963). It is supported by the concept of soil catena or ideal soil toposequence zonation (Milne 1935). The “landscape” aspects of biomes were already dealt with by Sukachev and Dylis (1964), who proposed the concept of biogeocenosis. This was later taken up and developed by Walter (Walter 1970, 1976; Walter and Box 1976; Walter and Breckle 1985, 1989), who also proposed the concept of biogeocoene complexes, indicating that they often coincide with spatially (landscape, catena) and temporally (vegetation dynamics) connected biogeocoenes. For Walter and Box (1976, and other referenced cited above), the hierarchy of units of the biogeosphere is (from more to less inclusive): (a) zonobiome (according to major climatic zones), (b) subzonal biome, (c) biome, (d) biogeocoene complexes, (e) biogeocoenes and (f) synusia. Geobiomes can also be arranged in a similar hierarchical manner, though they differ in that they incorporate the landscape, catenal view, where both orobiomes and pedobiomes (azonal and intrazonal biomes) do not require segregation.

The contributions mentioned above gave rise to the European development of dynamic-catenal phytosociology or landscape phytosociology (e.g., Schmithusen 1959; Tüxen 1979; Géhu and Rivas-Martínez 1981; Rivas-Martínez 2005; Rivas-Martínez et al. 2011b), as well as the development and advances of Landscape Ecology as a formal scientific discipline (e.g., Forman and Godron 1986; Forman 1997). They constitute the basis for the recognition of biomes as geobiomes.

Geocatena (= geoseries, geosigmetum) is defined by Rivas-Martínez (2005) and Rivas-Martínez et al. (2011b) as the complex of vegetation landscapes which include the potential natural climatophilous vegetation and their associated seral communities (zonal vegetation series), as well as the azonal and the intrazonal vegetation series which are spatially contiguous. Vegetation series (= sigmetum) is here considered as a set of plant communities including both the potential natural vegetation, and the seral plant-communities that replace them because of anthropic or natural impacts. A set of contiguous or adjacent geoseries, existing in the same geographical territory, that share similar characteristics of vegetation types, on the same or topographically related altitudinal levels and in the same biogeographic unit, is called macrogeoseries or macrogeosigmetum by Rivas-Martínez et al. (2011b). We now propose here to consider the latter as geocomplex biomes. As these concepts of geocomplex and geocatena relate several zonal and azonal (or intrazonal) communities in the landscape that replicate several times in each territory, they reflect large-scale ecosystems. They can therefore be regarded as geobiomes as defined in the proposal of Navarro and Molina (2021).

Until now, the integrated application of these concepts to the whole of South America has been scarce or non-existent. This is despite the existence of numerous regional or local works of a floristic or phytosociological nature which cover most of the continent (Cleef 1980, 1981; Cabido et al. 1991, 1994; Duivenvoorden and Lips 1995; Rangel et al. 1997, 2004, 2017; Galán et al. 2004, 2006, 2009, 2011, 2015, 2020; Luebert and Gajardo 2001, 2005; Luebert and Pliscoff 2017; Entrocassi et al. 2020; Minorta-Celys 2020, among others).

In this sense, our main goal is to apply the Geobotanic Landscape Ecology approach to the whole of South America, to provide a new tool for the integrated analysis and understanding of biomes, not only as types of vegetation but also as repetitive geobiophysical entities at large regional or wide local scales.

Landscape biome concept and hierarchical levels

Our proposal develops and extends the concepts defined above to biome level. Hence, we propose the following two biome definitions: Geocatenal biome and Geocomplex biome.

Geocatenal biome (Gcab) is a regional geographic area occupied by the same geoseries (geosigmetum) in a bioclimate and biogeographic unit, on the same ecological belt and geoform. Thus, a Gcab includes both the zonal potential plant formation and the azonal/intrazonal vegetation types associated with it in a repetitive pattern in the landscape. Within the geocatenal components, the zonal series marks the geoseries distribution and geographic extension, as well as its nomenclature. The change in the zonal series also drives the change of the geocatenal biome. When azonal vegetation series are the dominant landscape matrix, then they have to be considered as the geocatenal biome (e.g., extensive wetlands, flooded vegetation, or special substrates such as rock, laterite, serpentine, or sand), as stated in Navarro and Molina (2021).

Geocomplex biome or geobiome (Gcob) is a broad geographic area occupied by the same macrogeoseries (macrogeosigmetum) within a bioclimate, biogeographic and geomorphological unit, and on geographically contiguous altitudinal belts. Thus, a Gcob includes several floristically-structurally and ecologically related geoseries (geosigmetum) that are present as recurrent patterns in the landscape. Moreover, Gcob integrates both dimensions: the horizontal (traditional catenas) and vertical (altitudinal catenas), in a spatial model that can be extrapolated to other areas with analogous conditions. Within the geocomplex components, the spatially dominant geoseries marks the geobiome geographic distribution range and determines its nomenclature. Furthermore, a geocomplex biome (Gcob) may include one or more geocatenal biomes (Gcab). That is, a Gcob is made up of several spatially linked Gcabs.

Above these two conceptual levels, there is the macrobiome level, which is defined both by macrobioclimate and plant formation (Navarro and Molina 2021). This is roughly equivalent to the zonobiome in terms of spatial scale, but it differs conceptually from the latter by including both zonal and azonal (or intrazonal) communities (i.e., it does not use the zonality/azonality framework).

The hierarchical levels of the biome taxonomy and nomenclature that we propose here are updated and revised from Navarro and Molina (2021), to include the landscape ecology approach more adequately into the biome understanding.

The variables or classifiers involved in the delimitation and nomenclature of geocatenal and geocomplex biomes are shown in Table 1, and explicate as follows:

  • Macrobioclimate is the first and most important criteria. In this work, the macrobioclimate is used at the beginning of the geobiomes zonation models section and is not repeated in each case.
  • Altitudinal belt or ecological belts where the biome occurs. In the same way that geobiomes have a certain geographical extension, they are also typical of a certain ecological belt and are characteristic of specific biogeographic areas.
  • Vegetation physiognomy that is dominant in the geographical extension within the boundaries of the geocomplex, with emphasis on life form and foliage phenology (Navarro and Molina 2021).
  • Biogeography (region and/or province scale-levels) which is added to the end of the name in [square brackets]. Also including determinant geoforms, soils and lithology.
Table 1.

Hierarchical classification categories proposed for landscape biomes, their defining variables and geographical and biogeographical scale. The symbol ‘≡’ represents some approximate equivalent units.

Defining factors Geographical scale Biogeographic scale BIOME classification
Macrobioclimate Dominant plant formations Intercontinental and continental Realm/Sub-realm MACROBIOME
≡ Zonobiome, Navarro and Molina (2021)
≡ Formation, Faber-Lagendoen et al. (2020)
Altitudinal belts (thermicity) Bioclimate (ombric rhytms) Continental and sub-continental Region/Province GEOCOMPLEX BIOME
Macrogeocatenal iterative zonation model
≡ Biome, Navarro and Molina (2021)
≡ Division, Faber-Lagendoen et al. (2020)
Zonal vegetation (Geoform/Soil/Lithology) Regional and territorial (and sometimes local) Province/Sector GEOCATENAL BIOME
Geocatenal iterative zonation model
≡ Regional biome, Navarro and Molina (2021)
≡ Macrogroup/Group, Faber-Lagendoen et al. (2020)

Moreover, and according to general landform patterns, we distinguish two major geocomplex biome types: A Plains and hills geocomplex biomes (isogeocomplex), developed in geoforms such as alluvial plains, pediments, peneplains, plateaus, hills and wide valleys; and B Mountain geocomplex biomes (orogeocomplex) in large mountain ranges with abrupt valleys.

In order to clarify the above proposed geocomplex concept, we summarize it as follows:

  • The geocomplex biome unites or spatially integrates several geoseries or geocatenes that appear geographically associated or linked in a repetitive way in a physiographical, bioclimatical and biogeographical homogeneous landscape. Thus, a geocomplex is a characteristic and iterative set of catenas or geocatenas.
  • The geocomplex biome incorporates several catenas or geocatenas into a single spatial model, as long as these geocatenas are located in the same bioclimatic and biogeographic area.
  • The geocomplex biome integrates both the horizontal (traditional catenas) and vertical (altitudinal catenas) dimensions, in a single repetitive spatial model that can be extrapolated to areas with similar climatic conditions within a biogeographical unit.
  • The hierarchical key criteria that we propose to define the geocomplex biomes are: 1 - Macrobioclimate, 2 - Bioclimate, 3 - Plant formation, 4 - Altitudinal belt, 5 - Biogeographic unit and geophysical characters (geoforms, lithology, soils).
  • In relation to this proposal, we adhere methodologically (with regard to bioclimate and biogeography) to the conceptual and nomenclatural frameworks of Rivas-Martínez (2015) and Rivas-Martínez et al. (2011a, b). These are our interpretation tools, but other classifications may be used within the same conceptual framework.
  • The delimitation of a given geocomplex (i.e., setting the points where one geocomplex ends and another begins) is a critical issue. The criteria that we now propose refer to the following spatial discontinuities: a - change of biogeographic unit (region or province); b - significant change in bioclimate; c - important change of geomorphological unit. We also support the main criteria expressed in Zonneveld (1989): geoforms, climate, soils, lithology.

Methodology

The general methodological steps to survey transects and define the geocomplexes are shown in Fig. 1. We follow the classic approximation of integrated surveys and transects to define land-units, as expressed for example in the works of Zonneveld (1989), Duivenvoorden and Lips (1995), Forman (1997) and, recently, in Venezuela, by Guevara (2015) or in Colombia by Minorta-Cely (2020). The sequence of the steps followed can be summarized as follows:

  • For each biogeographic province, we delineate preliminary accessible transects in the field.
  • Observation and visual analysis of the selected areas in actual or recent satellite Google Earth images (https://earth.google.com/web/).
  • Previous study of the bioclimatic, geological, geomorphological and soil characteristics of the different areas proposed for transect implementation.
  • Survey of replicated field transects in selected areas that are internally homogeneous with respect to biogeography, landscape geomorphology, lithology and bioclimate.
  • Acknowledging that biomes are large-scale units, transects can be several km long. The specific length of each transect depends on regional characteristics and accessibility.
  • The transect ends when the biogeographic or bioclimatic conditions or geomorphic characteristics substantially change or there is a clear spatial discontinuity in them.
  • Systematic visual analytical comparison between transects to identify repetitive patterns and differentiate distinct types of possible geocomplex biomes.
  • Generalized hand drawn schemes of the geobotanical pattern or patterns recorded in the field transect. These drawings do not necessarily have a true or exact horizontal or vertical scale, they only represent in a simplified and idealized schematic way, the repetitive patterns of changes observed in the field. In this sense, these drawings constitute interpretative representational and descriptive models, and not realistic pictures of vegetation or plants, because they graphically explain and “represent a selected part or aspect of the world” (Frigg and Hartman 2020). Symbols of graphic textures below vegetation drawings are represented in all figures where different substrate types (soil and/or rocks) appear, according to widely accepted graphic representations. Moreover, in a general way, all the figures have a geographical orientation from west to east.
  • Finally, selected literature on transect zones is reviewed to adjust or complement the information obtained in the field. This stage is the only one for areas not directly known by field workers. In these cases, the repetitive pattern is deduced or interpreted from the data of the consulted bibliographical sources.
Figure 1. 

General methodological steps followed in this work (conceptual methodological terms are derived from Pickett et al. 1994).

We follow Rivas-Martínez et al. (2011a) for bioclimate classification. The ecological belts that we consider are those of Navarro and Molina (2021) based on Rivas-Martínez et al. (2011a; see Table 2). For vegetation physiognomy, we largely follow Navarro and Molina (2021), as well as the recent advances in the IVC-EcoVeg vegetation classification and its biome derivations (Faber-Lagendoen et al. 2014, 2018, 2020). Vegetation physiognomy in the Neotropics, but for a few azonal or intrazonal exceptions, relate to the bioclimate and ombrotype (see Table 3 in this text, and Table 2 in Navarro and Molina 2021). Biogeographic typology for South America follows Navarro and Ferreira (2007) and Rivas-Martínez et al. (2011b). The biogeographic model of Rivas-Martínez et al. (2011b) has an integrated character, defining biogeographic units not only by types of vegetation or endemic or restricted floristic assemblages (which are chorological models), but mainly by the relationships between the biota distribution with the bioclimate and geophysical characteristics (geoforms or soils). In this sense, this model is particularly useful and accurate in our purpose of identifying and defining integrated geocomplex biomes. In addition, many of the field transects presented in this work were used to corroborate and verify these biogeographic units.

In addition, diverse names from the compilation of Huber and Riina (1997) for Latin America and Caribbean were considered to adjust several determinations of formations, communities and biogeography. For soils types in the description of the units, we follow FAO classification (FAO 2015; Gardi et al. 2015). The conceptual and nomenclatural characterization of flood levels in wetlands follows Cowardin et al. (1979) and FGDC (2013).

In this work, geocomplex biomes are synoptically characterized, through model zonation profiles (Figs 2 to 42), each one including the following data:

  • Biogeography refers to the Biogeographic Region and/or Provinces where the transect has been located.
  • Representive locality is a place or geographic area where the unit has been studied in the field by the authors, or where it is cited in the consulted literature. However, representative locality is not necessarily the most “complete” locality among all the analogous ones, but mainly a good specific example that meets the following conditions:
  • It is a locality for which we have specific data collected in a sufficient number of field transects, so that it supports a repetitive spatial pattern.
  • It is an area or locality for which, although we do not personally have transects in the field, they do exist in the literature.
  • It is a locality that meets our proposed variables to define the geocomplex biome: 1 - Macrobioclimate, 2 - Bioclimate, 3 - Formation plant, 4 - Altitudinal belt, 5 - Biogeographic unit and geophysical characters.
  • Altitude: Interval or average altitudinal range obtained from field surveys and/or reported in the literature.
  • Average geographical latitude where the transects were made. Since several transects were carried out in each field work area, the latitude data that appears in each figure averages that of all.
  • Bioclimate: bioclimate types according to the maps and climate data from Rivas-Martínez et al. (2011a), where the unit naturally occurs. These papers have a large collection of weather stations from around the world with bioclimatic diagnosis and indices calculated for each station.
  • Known analogous distribution areas (homoplasic-geobiomes): the South American countries or regions where the existence of the unit or its analogue units are known to occur or have been reported in the literature. We consider biome analogy for those geobiomes (geocomplex biomes and/or geocatenal biomes) that share a similar structure, plant physiognomy and catenal ecological relationships, derived from presumed convergent or parallel evolution in homologous bioclimates, but whose biogeographic origin is independent or different and therefore also its floristic composition. These geographically separated biomes, with putatively different phylogenetic and biogeographic origins, but with analogous characteristics and determinant traits, can be named as “homoplasic-biomes” in the sense of the concept of homoplasy as applied to species in cladistic biogeography and panbiogeography (e.g.: Myers and Giller 1988; Wake et al. 2011).
  • IUCN related units: approximate inferred or related affinity to IUCN Global Ecosystem Typology (Keith et al. 2020, 2022). The equivalence with the IUCN approach is only of a general and approximate or indicative nature, because the underlying methodologies, objectives and concepts used are different in both proposals, with only general coincidences. The purpose is to show only the possible relationships with a broader global classification system.
  • Selected references: citation of some relevant bibliographic references upon which the proposal of each unit is based, compared, or complemented.
  • Phytotopographic or geobotanic profile: represented by a geocomplex biome graphic zonation model profile, raised from the field data (see above), where the distribution of the vegetation types in the geocatena (general plant communities and/or associations) is represented (Figs 2 to 42). The taxonomical nomenclature of characteristic species mentioned in each graphic model captions follows Tropicos.org, Missouri Botanical Garden, (https://tropicos.org, last accessed 01.02.2023). In the legend and captions of each phytotopographic profile, the key environmental and/or geomorphological traits that determine or characterize each type of vegetation are also briefly indicated.
  • The syntaxonomic nomenclature of vegetation units refers to general community designations and not necessarily to validate phytosociologically typified associations. However, in examples taken from the literature, the named communities follow the authors who defined them.
Table 2.

Equivalence between altitudinal belts and the thermotypes recognized by Rivas-Martínez in Tropical South America.

Altitudinal belts Thermotypes
Lowland Infra- and Thermotropical
Montane Mesotropical (low montane)
Supratropical (upper montane)
High-montane Orotropical and low Criorotropical
Subnival Upper crioro and gelid tropical
Table 3.

Relationships between vegetation physiognomy based on leaf phenology and bioclimates and ombrotypes of Rivas-Martínez in the Tropical South America.

Vegetation physiognomy Bioclimates Ombrotypes
Evergreen Pluvial Hyperhumid to humid
Evergreen seasonal Pluviseasonal Humid
Semideciduous Subhumid
Deciduous Xeric and desertic Dry to semiarid and arid

Results

Based on the previously outlined concepts and procedures, we propose 33 geocomplex biomes for South America, identified through geocatenal profile zonation models derived from more than 300 representative transect-plots in almost all South American countries (Argentina, Bolivia, Brazil, Chile, Paraguay, Perú, and Venezuela), collected from 1990 to the present. The field data was supplemented with data from the literature for countries without direct field experience of the authors (Colombia and Uruguay) and to corroborate and contrast our data obtained in the field. All transect data and their geolocation are in the process of being included in the recently implemented and published BOVEDA database (Oliveira et al. 2022).

The results obtained are presented below, using graphic zonation models (Figs 2 to 42) that represent the 33 geocomplex biomes identified in South America. These geobotanical models are schematic and do not have an exact horizontal or vertical scale, since the objective is to show the patterns of spatial distribution for the ecosystem sets associated in a repetitive way in the landscape, according to the principles explained in the methods.

The graphic geobotanical catenas have been grouped according to the different macrobioclimates recognized for South America. In each macrobioclimate, the general ordering criteria is mainly altitudinal (from higher to lower elevation) and by the adaptive structural physiognomy of the dominant vegetation (from lower to higher xeromorphy). Likewise, we group the thirty-three geocomplex biomes into sixteen macrobiomes, according to the criteria of macrobioclimate and dominant plant formations. Table 4 summarizes the proposed arrangement and ordering of the geocomplex biomes and macrobiomes, adding their known distribution in the South American biogeographic provinces of Rivas-Martínez et al. (2011b).

Table 4.

Macrobiomes, geocomplex biomes and their biogeographical distribution (at the Province level) of South America.

TROPICAL MACROBIOCLIMATE
NEOTROPICAL MACROBIOMES NEOTROPICAL GEOCOMPLEXES BIOMES BIOGEOGRAPHY (Province level)
A.1. TROPICAL HIGH MONTANE AND SUBNIVAL MACROBIOME 1. SUBNIVAL AND HIGH MONTANE TROPICAL XEROPHYTIC GEOCOMPLEX (Fig. 2) Xerophytic Puna
2. HIGH-MONTANE XEROMORPHIC SHRUBLAND & THICKET GEOCOMPLEX (Fig. 3) Xerophytic Puna
3. HIGH-MONTANE HUMID BUNCH-GRASSLAND GEOCOMPLEX (Fig. 4) Mesophytic Puna
4. HIGH-MONTANE EVERGREEN PÁRAMO GEOCOMPLEX (Fig. 5) Colombian-Andean
A.2. TROPICAL MONTANE EVERGREEN & SEASONAL FOREST & WOODLAND MACROBIOME 5. MONTANE EVERGREEN AND SEASONAL ANDEAN FOREST GEOCOMPLEX (Figs 68) Yungas
Colombian Andean
6. LOWLAND & MONTANE EVERGREEN PACIFIC FOREST GEOCOMPLEX (Fig. 9) Colombian Pacific (Chocó-Darién)
7. LOWLAND & MONTANE EVERGREEN ATLANTIC FOREST GEOCOMPLEX (Fig. 10) Brazilian Atlantic
8. LOWLAND & MONTANE EVERGREEN GUYANAN FOREST & SHRUBLAND GEOCOMPLEX (Fig. 11) Tepuyan
A.3. TROPICAL LOWLAND EVERGREEN FOREST & WOODLAND MACROBIOME 9.LOWLAND SEASONAL EVERGREEN FOREST GEOCOMPLEX (Fig. 12) Southwestern Amazonian
Lower Magdalena
10. LOWLAND EVERGREEN FOREST GEOCOMPLEX (Fig. 13) West Amazonian
Lower Magdalena
11. LOWLAND EVERGREEN GUYANAN FOREST AND SHIELD SAVANNA GEOCOMPLEX (Fig. 14) Guaviare-Orinoquian
12. LOWLAND SEASONALLY FLOODED FOREST & SHRUBLAND GEOCOMPLEX “Várzea” (Fig. 15) Amazonian
Guyanan
Lower Magdalena
13. COASTAL BRAZILIAN RESTINGA GEOCOMPLEX (Fig. 16) Brazilian Atlantic
A.4. TROPICAL MONTANE SEASONAL AND DECIDUOUS FOREST & WOODLAND MACROBIOME 14. MONTANE EVERGREEN SEASONAL WOODLAND GEOCOMPLEX (Fig. 17) Mesophytic Puna
Colombian-Andean
15. MONTANE EVERGREEN SEASONAL AND DECIDUOUS FOREST & WOODLAND GEOCOMPLEX (Fig. 18) Bolivian-Tucuman
Colombian-Andean
Guajira
A.5. TROPICAL LOWLAND SEASONAL AND DECIDUOUS FOREST & WOODLAND MACROBIOME 16. LOWLAND EVERGREEN SEASONAL AND DECIDUOUS GEOCOMPLEX (Fig. 19) Brazilian-Atlantic
Guajira
17. LOWLAND DECIDUOUS FOREST & SCLEROPHYLOUS WOODLAND GEOCOMPLEX (Fig. 20) Western Cerrado
Eastern Cerrado
Guajira
A.6. TROPICAL DECIDUOUS THORN WOODLAND & SHRUBLAND MACROBIOME 18. LOWLAND DECIDUOUS THORN WOODLAND & SHRUBLAND GEOCOMPLEX (Figs 2123) North Chaco
South Chaco
Caatinga,
Guayaquil
Guajira
Desertic Peruvian-Equatorian
19. MONTANE DECIDUOUS THORN WOODLAND & SHRUBLAND GEOCOMPLEX (Fig. 24) Bolivian-Tucuman
Guayaquil
Guajira
Colombian Andean
Mesophytic Puna
Desertic Peruvian-Equatorian
A.7. TROPICAL FOGGY COASTAL HYPERDESERT MACROBIOME 20. FOGGY TROPICAL HYPERDESERT GEOCOMPLEX (Figs 25, 26) Hyperdesertic Tropical
Chilean-Arequipan
Hyperdesertic North Peruvian
A.8. TROPICAL FLOODED SAVANNA MACROBIOME 21. LOWLAND FLOODED SAVANNA AND WOODLAND GEOCOMPLEX (Figs 2730) Beni
Pantanal
Llanos
MEDITERRANEAN MACROBIOCLIMATE
MEDITERRANEAN MACROBIOMES MEDITERRANEAN GEOCOMPLEX BIOMES BIOGEOGRAPHY
B.1. MEDITERRANEAN HIGH-MONTANE MACROBIOME 1. HIGH-MONTANE MEDITERRANEAN GEOCOMPLEX (Fig. 31) Mediterranean Andean
B.2. MEDITERRANEAN SCLEROPHYLLOUS WOODLAND MACROBIOME 2. LOWLAND & MONTANE EVERGREEN SEASONAL SCLEROPHYLLOUS GEOCOMPLEX (Fig. 32) Central Chilean
B.3. MEDITERRANEAN SHRUBY-GRASSLAND STEPPE MACROBIOME 3. MONTANE XEROMORPHIC SHRUBBY-GRASSLAND STEPPE GEOCOMPLEX (Fig. 33) North Patagonian
4. MONTANE SUBHUMID SHRUBBY-GRASSLAND STEPPE GEOCOMPLEX (Fig. 34) South Patagonian
B.4. MEDITERRANEAN XEROMORPHIC SHRUBLAND & THICKET MACROBIOME 5. MONTANE XEROMORPHIC SHRUBLAND & THICKET GEOCOMPLEX (Fig. 35) Argentine Monte
B.5. MEDITERRANEAN OCEANIC HYPERDESERT MACROBIOME 6. MEDITERRANEAN FOGGY DESERT GEOCOMPLEX (Fig. 36) Desertic Mediterranean Chilean
TEMPERATE MACROBIOCLIMATE
TEMPERATE MACROBIOMES TEMPERATE GEOCOMPLEX BIOMES BIOGEOGRAPHY
C.1. TEMPERATE OCEANIC EVERGREEN & MIXED FOREST MACROBIOME 1. MONTANE TEMPERATE OCEANIC EVERGREEN FOREST GEOCOMPLEX (Fig. 37) Valdivian
2. LOWLAND & MONTANE HYPEROCEANIC TEMPERATE FOREST GEOCOMPLEX (Fig. 38) Valdivian
3. TEMPERATE HYPEROCEANIC MAGELLANIAN FOREST GEOCOMPLEX (Fig. 39) Temperate Magellanian
C.2. TEMPERATE GRASSLAND & WOODLAND MACROBIOME 4. TEMPERATE OCEANIC LOWLAND WOODLAND AND GRASSLAND GEOCOMPLEX (Fig. 40) Mesophytic Pampean
5. TEMPERATE LOWLAND DRY THORN WOODLAND AND GRASSLAND GEOCOMPLEX (Fig. 41) Xerophytic Pampean (“Espinal”)
BOREAL CLIMATE
BOREAL MACROBIOME BOREAL GEOCOMPLEX BIOME BIOGEOGRAPHY
D.1. AUSTROBOREAL HYPEROCEANIC MACROBIOME 1. AUSTROBOREAL WET WOODLAND & PEATBOG GEOCOMPLEX (Fig. 42) Boreal Austro- Magellanian

Based on the field transects completed and the literature consulted in this regard, we consider that these results likely represent most of the diversity of geocomplex biomes that exist in South America.

A. Tropical (Neotropical) geocomplex biomes

A.1. Subnival and high montane tropical xerophytic geocomplex (Fig. 2) [Biogeography: Tropical South Andean Region, Xerophytic Puna Province]. Representative type locality: Laguna Colorada, Sud Lípez, Potosí, Bolivia, ca. 22°12'S. Altitude: 4400–5150 m. Known analogous distribution areas (homoplasyc geobiomes): W Bolivia, NE Chile, NW Argentina, SW Perú. Bioclime: Oro-criorotropical xeric dry. IUCN related units: “Cool deserts and semi-deserts”, “Tropical alpine grasslands and shrublands”. Refs.: Cabrera (1976), Ruthsatz and Movia (1975), Luebert and Gajardo (2001, 2005), Josse et al. (2003, 2007), Navarro (1993, 2004, 2005, 2011, 2021), Navarro and Rivas-Martínez (2005), Navarro and Ferreira (2007), Navarro and Maldonado (2002), Galán et al. (2002, 2004, 2009), Sayre et al. (2008), Oyarzábal et al (2018), Navarro and Molina (2019, 2020).

Figure 2. 

Subnival and high montane tropical xerophytic geocomplex. 1. Cryomorphic open vegetation: Nototriche auricoma-Oriastrum sphaeroidalis community. Strongly-cryoturbed stony soils. 2. Xeromorphic bunch-grassland: Senecio puchii-Stipa frigida community. Cryoturbed high-montane slopes. 3. Xeromorphic bunch-grassland: Junellia pappigera-Festuca orthophylla community. Subnival volcanic sandy-gravel lapilli piedmonts with deep regosols. 4. Phreatophytic xeromorphic shrubland & thicket: Frankenia triandra-Parastrephia phylicaeformis community. Saline plains with shallow seasonal water tables or temporarily ponded. 5. Saline hygrophitic bunch-grassland: Xenophyllum incisum-Festuca scirpifolia community. Damp seasonally ponded saline soils. 6. Hygrophitic saline meadows and grassland: Xenophyllum incisum-Deyeuxia curvula community. Seasonally ponded alluvial plain. 7. Cushion-like peatbog: Zameioscirpus atacamensis-Oxychloe andina community. Saline seasonally flooded peat bog. 8. High-montane aquatic vegetation: Lilaeopsis macloviana-Ranunculus uniflorus-Potamogeton filiformis communities. Graphic interpretation based on our field transect data and cited references.

A.2. High-montane xeromorphic shrubland & thicket geocomplex (Fig. 3) [Biogeography: Tropical South Andean Region, Xerophytic Puna Province]. Representative type locality: Coipasa, Oruro, Bolivia, ca. 19°15'S. Altitude: 3650–3800 m. Known analogous distribution areas (homoplasyc geobiomes): SW Bolivia, NE Chile NW Argentina, SW Perú. Bioclime: Orotropical xeric semiarid. IUCN related units: “Cool deserts and semi-deserts”, “Thorny deserts and semi-deserts”. Refs.: Ruthsatz and Movia (1975), Cabrera (1976), Luebert and Gajardo (2001, 2005), Josse et al. (2003, 2007), Navarro (1993, 2004, 2005, 2011), Navarro and Rivas-Martínez (2005), Navarro and Ferreira (2007), Navarro and Maldonado (2002), Galán et al. (2002, 2004, 2009), Sayre et al. (2008), Oyarzábal et al (2018), Navarro and Molina (2019, 2020).

Figure 3. 

High-montane xeromorphic shrubland & thicket geocomplex. 1. Xeromorphic succulent shrubland & thicket: Lycium chanar-Trichocereus atacamensis community. Altiplano semidesertic vegetation with succulents and cacti on Coipasa Salt Lake karstified lacustrine limestone terraces. 2. Xeromorphic shrubland & thicket: Junellia seriphioides-Fabiana densa community. Altiplano stony hillside with well-drained stony soils. 3. Phreatophytic xeromorphic shrubland & thicket: Frankenia triandra-Parastrephia lepidophylla community. Altiplano proximal and medium glacis sections, on flat calcic loamy-clay soils with sallow phreatic levels. 4. Phreatophytic bunch-grassland: Festuca hypsophila communities. Altiplano distal glacis, on seasonally humid loam-sandy calcic soils with sallow phreatic levels and seasonally ponded. 5. Gypsic xeromorphic grassland-thicket: Frankenia triandra-Distichlis humilis communitiy. Altiplano saline meadows on seasonally ponded silty-gypsic soils. 6. Saline xeromorphic shrubland & thicket: Atriplex nitrophiloides-Sarcocornia pulvinata community. Altiplano saline bassins with seasonally ponded solonetz and solonchaks. Graphic interpretation based on our field transect data and cited references.

A.3. High-montane humid bunch-grassland geocomplex (Fig. 4) [Biogeography: Tropical South Andean Region, Mesophytic Puna Province] Representative type locality: Nevado Huayna Potosí, La Paz department, Bolivia, western piedmont, ca. 16°17'S. Altitude: 4120 m. Known analogous distribution areas (homoplasyc geobiomes): N Bolivia, W Perú, S Ecuador. Bioclime: Orotropical pluviseasonal humid. IUCN related units: “Tropical alpine grasslands and shrublands”. Refs. Luebert and Gajardo (2005), Josse et al. (2003, 2007), Navarro (2004, 2005, 2011), Navarro and Ferreira (2007), Navarro and Maldonado (2002), Sayre et al. (2008), Galán et al. (2004, 2009), Oyarzábal et al (2018).

Figure 4. 

High-montane humid bunch-grassland geocomplex. 1. High-montane bunch-grassland: Deyeuxia vicunarum-Festuca orthophylla communities. Zonal humid Puna vegetation on high-montane stony well-drained hillside soils. 2. Meadow’s grassland: Deyeuxia rigescens-Festuca humilior communities. Seasonally ponded or saturated wet Puna flat soils. 3. Flat-cushion peatbog: Deyeuxia rigescens-Plantago tubulosa communities. Seasonally flooded peaty vegetation. 4. Domed-cushion wet peatbog: Oxychloe andina-Distichia muscoides communities. Permanently flooded peaty vegetation. 5. Puna aquatic vegetation: Isoetes lechleriana community. Poorly mineralized acidic stagnant waters. Graphic interpretation based on our field transect data and cited references.

A.4. High-montane evergreen páramo geocomplex (Fig. 5) [Biogeography: Neogranadian Region, Colombian-Andean Province]. Representative type locality: Páramos del Águila, Las Cruces, Piedras Blancas (Timotes a Mérida, Venezuela), ca. 08°50'N. Altitude: 4020 m. Known analogous distribution áreas (homoplasyc geobiomes): W Venezuela, W Colombia, Ecuador. Bioclime: orotropical pluvial humid-hyperhumid. IUCN related units: “Tropical alpine grasslands and shrublands”, “Permanent marshes”. Refs.: Cuatrecasas (1968), Goebel (1975), Van der Hammen ed. (1995), Rangel (1997, 2000), Sierrra (1999), Cleef (1981), Luteyn (1999), Sklenár and Ramsay (2001), Van der Hammen et al. (2005), Cleef et al. (2008), Josse et al. (2003, 2007), Costa et al. (2007), Sayre et al. (2008), Pinto and Rangel (2010), Peyre (2015), Peyre et al. (2018), Navarro (2021).

Figure 5. 

High-montane evergreen páramo geocomplex. 1. Cauli-rosulate thicket: Draba interhubera-Espeletia moritziana community. Stony excessively well drained hillside soils. 2. Evergreen cauli-rosulate shrubland and bunch-grassland: Azorella juliani-Coespeletia timotensis community. Humid well-drained moraine slope soils. 3. Evergreen cauli-rosulate thicket: Espeletia alba-Espeletia spicata community. Wet poorly drained flat soils permanently saturated (umbric gleysol). 4. Meadow’s grassland: Carex amicta communities. Swamp soils (dystric anmoor). 5. Wet domed-cushion peatbog: Plantago rigida communities. Permanently flooded peaty soils (dystric histosols). 6. Páramo aquatic vegetation: Myriophyllum quitensis-Ranunculus flagelliformis communities. Poorly mineralized acidic stagnant waters. Graphic interpretation based on our field transect data and cited references.

A.5. Montane evergreen and seasonal andean forest geocomplex (Fig. 6) [Biogeography: Tropical South Andean Region, Yungas Province]. Representive type locality: Cordillera del Ronco, Cochabamba Dept., Bolivia, ca. 17°22'S. Altitude: 1600–4600 m. Known analogous distribution áreas (homoplasyc geobiomes): Tropical Andes in Venezuela, Colombia, Ecuador, Perú, Bolivia. Bioclime: termo to orotropical pluvial hyperhumid-humid. IUCN related units: “Tropical-subtropical montane rainforests”. Refs.: Navarro and Maldonado (2002), Josse et al. (2003, 2009), Navarro and Ferreira (2007), Sayre et al. (2008), Navarro (2011), MAE (2012), Fuentes (2016), Galán et al. (2015, 2020).

Figure 6. 

Montane evergreen and seasonal andean forest geocomplex. 1. Evergreen high-montane woodland: Gynoxys asterotricha-Polylepis pepei community. High-montane Polylepis Yungas woodland. 1. High-montane bunch-grassland: Deyeuxia chrysanta-Festuca steinbachii community. High-montane Yungas grassland & wet Meadows. 2. Evergreen upper montane woodland: Ilex mandonii-Polylepis lanata community. Upper montane Polylepis Yungas forest & woodland. 3. Evergreen upper montane forest: Weinmannia bangii-Weinmannia fagaroides community. Upper montane Yungas forest. 4. Evergreen montane forest: Weinmannia cordata-Podocarpus oleifolius community. Montane Yungas pluvial forest. 5. Evergreen seasonal montane forest: Juglans boliviana-Podocarpus oleifolius community. Montane Yungas pluviseasonal forest on rain-shadow topographic situations. 6. Deciduous forest and woodland: Samaipaticereus inquisivensis-Schinopsis haenkeana community. Low-montane Yungas interandean dry forest and woodland. 7. Evergreen low-montane palm-forest: Protium aff. altsonii-Dictyocaryum lamarckianum community. Low-montane Yungas forest. 8. Montane riverine forest: Vallea stipularis-Alnus acuminata community. Intermitently or episodic flooded Yungas streams and riverbanks. Lotic. 9. Low-montane riverine forest: Inga adenophylla-Inga marginata community. Intermitently or episodic flooded Yungas streams and riverbanks. Lotic. 10. Low-montane erosive successional forest: Heliocarpus americanus-Inga nobilis community. Secondary forest on steep hillside landslides. Graphic interpretation based on our field transect data and cited references.

A.6. Montane evergreen and seasonal andean forest geocomplex (Fig. 7) [Biogeography: Neogranadian region, Colombian Andean Province (central)]. Representative type locality: Cordillera Central Colombia, generalized interpretation based on cited literature. Altitude: 700–4000 m. Known analogous distribution áreas (homoplasyc geobiomes): Tropical Andes in Venezuela, Colombia, Ecuador, Perú, Bolivia. Bioclime: infra to orotropical pluvial humid-hyperhumid. IUCN related units: “Tropical-subtropical montane rainforests”. Refs.: Cuatrecasas (1958), Cleef (1980), Rangel and Franco (1985), Rangel ed. (1997), Sierra Ed. (1999), Sclenár and Ramsey (2001), Van der Hammen (2003), Cleef et al. (2003), Rodríguez et al. (2006), Josse et al. (2003, 2009), Rodríguez et al. (2006), Rangel and Pinto (2012), Latorre et al. (2014), Josse (2014), Avella (2016), Rangel (2017), Peyre et al. (2018), Galán et al. (2020).

Figure 7. 

Montane evergreen and seasonal andean forest geocomplex. 1. Evergreen high-montane caulirosulate Páramo woodland and bunch-grasland: Espeletia hartwegiana, Espeletia sp. pl. Espeletiinae gen. et sp. pl. Deyeuxia effusa, Deyeuxia sp. pl., Festuca sp.pl., Swalenochloa tessellata. Orotropical and criorotropical pluvial hyperhumid bioclimatic belt. 4100-4600 m. Permanently saturated to flooded peaty soils. 2. Evergreen high-montane subsclerophyllous low woodland and shrubland: Polylepis sericea-Gynoxis tolimensis-Escallonia myrtilloides communities. Low orotropical pluvial hyperhumid bioclimatic belt. 4000-4300 m. Rocky screes with water saturated humus deep pouchs. 3. Evergreen upper montane lauroid low-forest: Weinmannia mariquitae-Weinmannia tomentosa communities, and Weinmannia pubescens communities, with Weinmannia cochensis, W. microphylla, W. pinnata, W. pubescens, Clusia multiflora, Clethra fagifolia, C. minor, Myrsine dependens Qercus humboldtii, etc. Supratropical pluvial hyperhumid bioclimatic belt, on saturated or ponded moss soils (anmoor, histosols). 3200-4100 m. 4. Evergreen montane forests: Brunellia macrophylla-Weinmannia pubescens communities, with Podocarpus oleifolius, Weinmannia balbisiana, W. sorbifolia, W. tomentosa, Quercus humboldtii, Ocotea sp.pl., Persea sp.pl., étc. Mesotropical pluvial hyperhumid bioclimatic level. 2100-3200 m. Exposed outer mountain slopes. 5. Evergreen low-montane forests: Freziera tomentosa-Dictyocaryum lamarckianum communities with Quercus humboldtii, Billia columbiana, Prunus myrtifolia, Weinmannia pinnata. Upper termotropical pluvial hyperhumid bioclimatic belt. 1100-2100 m. Exposed outer mountain slopes. 6. Evergreen seasonal montane forest: Hyeronima colombiana-Saurauia humboldtiana communities with Clethra fagifolia, Billia columbiana, etc. Mesotropical pluviseasonal humid bioclimatic level. 2500–2600 m. Estearn mountain interandean slopes. 7. Semideciduous basimontane forest: Bursera tomentosa communities, wit: Stenocereus griseus, Pithecellobium dulce, Ochroma longipes, Toxicondendron striatum, Hirtella americana, Acacia spp., etc. Upper termotropical pluviseasonal subhumid, and xeric dry bioclimatic level. Intermontane rain shadow slopes and interandean valleys. Graphic simplified and generalized geobotanical interpretation based on above cited references, particularly Rangel and Franco (1985).

A.7. Montane evergreen and seasonal andean forest geocomplex (Fig. 8). [Biogeography: Colombian Andean Province, Southern]. Representative type locality: Perú, Cajamarca, Cutervo-Contumazá transect, from Galán et al. (2015). Altitude: 2500–4000 m. Known analogous distribution áreas (homoplasyc geobiomes): Tropical Andes in Venezuela, Colombia, Ecuador, Perú, Bolivia. Predominant Bioclime: termo to orotropical pluviseasonal-pluvial subhumid-humid. IUCN equivalences: “Tropical-subtropical montane rainforests”. Refs.: Rangel and Franco (1985), Rangel ed. (1997), Josse et al. (2003, 2009), Costa et al. (2007), Sayre et al. (2008), Galán et al. (2015, 2020).

Figure 8. 

Montane evergreen and seasonal andean forest geocomplex. 1. Evergreen seasonal basimontane forest: Cecropia montana-Heliocarpus americanus community. 1000-1800 m. Upper thermotropical pluviseasonal humid. 2. Evergreen seasonal to deciduous Andean hygrophyllous forest: Vallea stipularis-Alnus acuminata communities. Humid montane valleys and headwaters with hydric or saturated soils. Mesotropical and low supratropical edapho hygrophyllous and riparian vegetation. 3. Evergreen montane forest: Axinaea nitida-Podocarpus oleifolius community. 2500-2600 m. Mesotropical pluvial humid-hyperhumid bioclimatic level. Montane humid lauroid Yungas foresto on exposed mountain slopes and humid high-valleys. 4. Evergreen sub-sclerophyllous woodland: Barnadesia dombeyana-Polylepis racemosa community. 3300-3900 m. Supratropical pluviseasonal humid bioclimatic level. Upper-montane low forest and woodlands on interior mountain slopes. 5. High-andean bunch-grassland: Agrostis tolucensis-Paspalum bonplandianum community. 3800-4000 m. Low orotropical pluvial humid-hyperhumid bioclimatic level. Humic saturated soils of “Herbaceous Páramo”. 6. Mosaic of meadow’s grassland, wet domed-cushion Páramo peatbogs (Plantago rigida communities), and Páramo aquatic vegetation (Myriophyllum quitensis-Ranunculus flagelliformis) communities. 3900-4100 m. Orotropical pluvial hyperhumid. 7. Semideciduous shrubland and woodland: Colletia spinosissima-Kageneckia lanceolata communities. 3180-3300 m. Upper mesotropical pluviseasonal subhumid to upper dry, bioclimatic level. Upper-montane vegetation, in interandean valleys or not exposed mountain slopes, with rain shadow effect. Graphic geobotanical generalized geobotanical interpretation based on Galán et al. (2015) pro part. and Google Earth images.

A.8. Lowland & montane evergreen pacific forest geocomplex (Fig. 9). [Biogeography: Neogranadian Region, Colombian Pacific Province: Chocó-Darién]. Representative type locality: Colombian Chocó western Andean slopes generalized transect, based on Cuatrecasas (1958), Rangel (1997, 2004). Altitude: 0–3000 m. Known analogous distribution areas (homoplasyc geobiomes): W Pacific Colombia, NW Ecuador, SW Panamá. Bioclime: infra to supratropical pluvial ultrahyperhumid. IUCN related units: “Tropical-subtropical lowland rainforest”, “Tropical flooded forests and peat forests”, “Tropical heath forests”, “Tropical-subtropical montane rainforest”. Refs: Cuatrecasas (1958), Hernández and Sánchez (1992), Rangel ed. (1997, 2004), Josse et al. (2003), Sayre et al. (2008), MAE (2012), Latorre et al. (2014), Avella (2016), Rangel (2017).

Figure 9. 

Lowland & montane evergreen pacific forest geocomplex. 1. Riverine palm-Woodland: Raphia taedigera communities. Seasonally flooded sandy-marshy river beaches. 2. Flooded riverine successional forest: Chrysobalanus icaco-Erythrina fusca communiy. 3. Evergreen mature forest: Mora megistosperma-Prioria copaifera communities. Seasonally flooded alluvial floodplain. 4. Swamp palm-woodland: Montrichardia arborescens-Mauritiella macroclada communities. Permanently flooded lowland marshes. 5. Evergreen lowland Chocó Forest: Cordia panamensis-Huberodendron patinoi communities. Lowland alluvial seasonally saturated medium drained soils. 6. Evergreen lower-hills Chocó forest (100-300 m): Anacardium excelsum-Cavanillesia platanifolia communities. 7. Evergreen medium-hills lowland forest (300-1200 m): Brosimum utile-Cariniana pyriformis-Dipteryx panamensis communities. 8. Evergreen low-montane forest: (1100-1800 m): Guettarda chiriquensis -Weinmannia balbisiana-Ficus hartwegii communities. 9. Evergreen upper montane forest (2400-2800 m): Quercus humboldtii-Podocarpus oleifolius communities. 10. Evergreen high-montane woodland (3500-3700 m): Miconia gleasoniana-Weinmannia mariquitae communities. Graphic geobotanical interpretation based on Cuatrecasas (1958), Rangel (1997, 2004).

A.9. Lowland & montane atlantic evergreen forest geocomplex biome (Fig. 10) [Biogeography: Brazilian Atlantic Province, Atlantic sector]. Representative type locality: Generalized transect from Bahía Paraguaná-Serra do Mar-Planalto (Brazil, southern estado do Paraná), 25°–26°S. based on Bolós et al. (1991). Altitude: 0–1400 m. Known analogous distribution areas (homoplasyc geobiomes): E Atlantic Brazil, SE Paraguay, NE Argentina. Bioclime: termo-mesotropical pluvial and pluviseasonal humid. IUCN related units: “Tropical-subtropical lowland rainforest”, “Tropical-subtropical montane rainforest”. Refs.: Rizzini (1979), Bolós et al. (1991), Veloso et al. (1991), Joly et al. (1999), Lorenzi (2008, 2009), Stehman et al. (2009), Felfili et al. Eds (2011), Giaretta et al. (2013), Marques et al. (2015), IBGE (2019).

Figure 10. 

Lowland & montane atlantic evergreen forest geocomplex biome. 1. Evergreen seasonal coastal shrubland (“restinga”): Myrcia splendens-Guapira opposita communities with Butia capitata, Pilosocereus arrabidae, Psidium cattleianum, Eugenia brasiliensis, Pera glabrata, Kielmeyera membranacea, Spondias macrocarpa. Sand dunes coastal restinga vegetation. 2. Mangroves: Avicennia schaueriana-Rhizophora mangle communities. 3. Evergreen lowland forest: Xylopia brasiliensis-Sloanea guianensis communities, with, Ocotea puberula, Euterpe edulis, Attalea dubia, Syagrus romanzoffiana, Weinmannia paullinifolia, Terminalia uleana. Lowland humid-hyperhumid atlantic forest. 4. Evergreen low-montane forest: Oreopanax capitatus-Jacaranda montana-Weinmannia organensis communities, with Pyllostylon brasiliense. 5. Evergreen montane atlantic woodland: Clethra uleana-Myrcia obtecta community. Humid to hyperhumid woodland and shrublands on mountain summits. 6. Deciduous montane atlantic forest: Myracrodruon balansae-Schinopsis brasiliensis-Attalea pindobassu communities. Rain-shadow seasonally dry valleys. 7. Evergreen riparian atlantic forest. Inga tenuis-I. thibaudiana-Cariniana ianeirensis communities. Seasonally flooded riverine banks and floodplain. 8. Evergreen seasonal sclerophyllous woodland (Cerrado). Kielmeyera grandiflora-Callisthene major-Vochysia elliptica communities. 9. Montane woodland savanna: Butia campicola-Berberis glazioviana-Lantana camara, Paepalanthus sp. pl. communities, with Andropogon bicornis. Non flooded pyrogenic secondary savannas that replace the forest after the impact of fire and logging. 10. Evergreen montane Atlantic forest and woodland: Ocotea puberula-Araucaria angustifolia communities, with humid grassland: Leptocoryphium lanatum-Paspalum lineare community. 11. Evergreen montane riparian forest: Podocarpus lambertii communities. Graphic geobotanical interpretation based on Bolós et al. (1991) and cited references.

A.10. Lowland & montane evergreen guyanan forest & shrubland geocomplex (Fig. 11). [Biogeography: Guyanan-Orinoquian Region, Tepuyan Province]. Representive type locality: Cerro Autana tepui area, ca. 04°49'S (Amazonas, Venezuela). Altitude: 95–500 m. Known analogous distribution areas (homoplasyc geobiomes): S. Venezuela, N. Brasil, Guianas. Bioclime: infra-termo (-mesotropical) pluvial humid-hyperhumid. IUCN related units: “Tropical-subtropical lowland rainforest”, “Tropical flooded forests and peat forests”, “Tropical heath forests”, “Tropical-subtropical montane rainforest”. Refs.: Huber (1988), Huber and Riina (1997), Camaripano-Venero and Castillo (2003), Morales and Castillo (2005), Rangel et al (1995), Rangel ed. (2008), Huber and Oliveira-Miranda (2010), Safont (2015), Usma et al. (2022).

Figure 11. 

Lowland & montane evergreen guyanan forest & shrubland geocomplex. 1. Evergreen guyanan-orinoquian forest. Ruizterania retusa-Chaetocarpus schomburgkianus communities. Upland plain with seasonally saturated soils. 2. Flooded riparian forest and woodland (“Igapó”): Taralea oppositifolia-Aldina latifolia-Malouetia glandulifera communities. Semipermanently flooded black water stream banks (lotic). 3. Palm swamp: Leopoldinia pulchra-Mauritiella aculeata communities. Permanently flooded black water streams and alluvial ponds (lentic). 4. Riparian shrubland: Simaba orinocensis-Coccoloba ovata communities. Semipermanently flooded by black-water successional vegetation on river and stream banks (lotic). 5. Flooded forest (“Boyal”): Malouetia glandulifera-Molongun laxum-Heteropetalum brasiliense communities. Seasonally flooded alluvial plain. 6. Seasonal evergreen sclerophyllous woodland (“amazonian caatinga”): Eperua leucantha-Micropholis maguirei-Caraipa densifolia communities. Dystrophic podsolized soils on white-sand seasonally ponded paleochannels. 7. Tepuis evergreen montane woodland and scrubs: Kunhardtia rhodantha-Brocchinia hechtioides and Bonnetia crassa-Podocarpus neblinae communities. Moderately deep and semipermanently saturated oligotrophic soils of tepuis plateux. 8. Tepuis evergreen montane forbland & sedge-grasslands: Stegolepis-Xyris-Eriocaulon-Wurdackia communities. Shallow poorly drained oligotrophic stony soils of tepuis inselbergs, plateaus and screes. Graphic geobotanical interpretation based on cited references, our own field data (Autana Tepui) and Google Earth images.

A .11. Lowland seasonal evergreen forest geocomplex (Fig. 12) [Biogeography: Amazonian Region, Southwestern Amazonian Province]. Representative type locality: generalized transect from northern A. Iturralde province (La Paz department) 13°29'S to northern F. Román province (Pando Department) ca. 10°S, Bolivia. Altitude: 200 to 130 m. Known analogous areas (homoplasyc geobiomes): SW Venezuela, SE Colombia, E Ecuador, E Perú, N Brazil, N Bolivia. Bioclime: infratropical pluviseasonal and pluvial humid. IUCN related units: “Tropical-subtropical lowland rainforest”, “Tropical flooded forests and peat forests”, “Tropical heath forests”. Refs.: Rizzini (1979), Encarnación (1985, 1993), Salo et al. (1986), Kalliola et al. (1993), Klinge et al. (1995), Junk (1997), Joly et al. (1999), Navarro et al. (2001), Navarro and Maldonado (2002), Morales and Castillo (2005), Encarnación and Zárate (2007), Encarnación et al. (2014), Josse et al. (2003, 2007, 2009), Navarro (2011), Sayre et al. (2008).

Figure 12. 

Lowland seasonal evergreen forest geocomplex. 1. Evergreen seasonal preandean-subandean forest: Pentaplaris davidsmithii-Quararibea wittii community. Low mountain ranges of the sub-Andean region. 2. Evergreen seasonal piedmont forest: Quararibea wittii-Dypterix odorata community. Amazonian eastern andean glacis. 3. Evergreen seasonal hill forest: Phytelephas macrocarpa-Tachigali vasquezi community. Western Amazonian preandean hills with sandy soils. 4. Evergreen seasonal peneplain forest: Apuleia leiocarpa-Bertholletia excelsa community. Ondulated lateritic Amazonian peneplains on tertiary materials. 5. Flooded riparian forest & woodland: Symphonia globulifera-Cariniana domestica community. Clear water stream banks (Lotic), semipermanently flooded. 6. Palm swamp-forest: Macrolobium acaciifolium-Mauritia flexuosa community. Black water streams and ponds (lentic) permanently flooded. 7. Evergreen seasonal sclerophyllous woodland (“Amazonian Caatinga”): Qualea albiflora-Cariniana domestica communities. Seasonally ponded in depressed flat paleochannels with sandy quartz sediments and poorly drained oligotrophic-podsolized soils. 8. Evergreen seasonal precambrian shield forest: Attalea speciosa-Peltogyne heterophylla community. Amazonian precambrian shield (gneisitic and granitic).9. Saxicolous-fissuricole vegetation: Monvillea kroenleinii-Cyrtopodium paranaense community. Precambrian crystalline rocky outcrops. Graphic interpretation based on our own field data, cited references, and Google Earth images.

A.12. Lowland evergreen forest geocomplex (Fig. 13) [Biogeography: West Amazonian Province, Caquetá-High Vaupés sector, transitional to Guyanan-Orinoquian sector]. Representative type locality: generalized transects based on Duivenboorden and Lips (1995), on the Middle Caquetá-Araracuara area (Colombia). 0°03'S to 0°50'S. Altitude: 200 to 350 m. Known analogous areas (homoplasyc geobiomes): SW Venezuela, SE Colombia, NE Ecuador, NE Perú. Bioclime: infratropical pluvial humid-hyperhumid. IUCN related units: “Tropical-subtropical lowland rainforest”, “Tropical flooded forests and peat forests”, “Tropical heath forests”. Refs.: Rizzini (1979), Encarnación (1985, 1993), Salo et al. (1986), Huber (1988), Klinge et al. (1995), Duivenvoorden and Lips (1995), Junk (1997), Rangel ed. (1997), Joly et al. (1999), Steege et al. (1999), Camaripano-Venero and Castillo (2003), Morales and Castillo (2005), Rangel ed. (2008), Encarnación and Zárate (2007), Josse et al. (2003, 2007, 2009), Romero et al. (2004), Díaz and Rosales (2006), Sayre et al. (2008), Huber and Oliveira-Miranda (2010), Encarnación et al. (2014).

Figure 13. 

Lowland evergreen forest geocomplex. 1. Evergreen peneplain forests: Goupia glabra-Clathrotropis macrocarpa and Swartzia schomburgkii-Clathrotropis macrocarpa communities. Ondulated lateritic Amazonian dissect peneplains on tertiary materials (Miocene). 2. Flooded riparian forest & woodland: Didymocistus chrysadenius-Euterpe precatoria and Caryocar microcarpum-Macrolobium acaciefolium communities. Clear water stream flood plain and old meander riverbanks (lotic). 3. Riparian woodland: Byrsonima japurensis-Inga punctata community. Riverine successional clear water stream-banks (lotic). 4. Flooded riparian forest & woodland: Acosmium nitens-Amanoa oblongifolia community. Black water flood plain streams (lotic). 5. Evergreen seasonal sclerophyllous woodland (“Amazonian Caatinga”): Mauritia carana-Rhodognaphalopsis brevipes community. Seasonally ponded flat depressions paleochannels with sandy quartz sediments and poorly drained podsolized-oligotrophic soils. 6. Tabebuia insignis-Mauritia flexuosa community. Dystrophic black-water permanently flooded swamps. 7. Scleromorphic scrub: Dimorphandra cuprea-Ilex divaricata community. Top of sandstone plateaus (Paleozoic Aracuara Formation) with well-drained shallow soils 300-350 m. 8. Macairea rufescens-Bonnetia martiana community. Scleromorphic low forest on top of sandstone plateaus (slightly concave areas) with somewhat deep sandy soils semipermanently saturated. 9. Axonopus schultesii-Schoenocephalium martianum community. Graminoid herbaceous savanna on shallow very acid white-sand saturated soils. 10. Saxicolous low terophytic open epilithic vegetation: Xyris wurdackii-Paspalum tillettii and Siphanthera hotsmannii-Xyris paraensis communities. Exposed hard rock with very thin lithic leptosols. 11. Saxicolous-fissuricole vegetation: Navia garcia-barrigae communities. Paleozoic sandstone rocky outcrops. Graphic geobotanical interpretation based on Duivenboorden and Lips (1995) and Google Earth images.

A.13. Lowland evergreen guyanan forest and savanna geocomplex (Fig. 14) (Biogeography: Guyanan-Orinoquian Region, Guaviare-Orinoquian Province) Representative type locality: Lower Meta River (Colombia) to Cinaruco river in Puerto Ayacucho (Venezuela), 6°12'N–5°33'N. Altitude: 70–140 m. Bioclime: infratropical pluviseasonal humid. Known analogous distribution areas (homoplasyc geobiomes): S. Venezuela, SE Colombia, N. Brazil, Guianas. IUCN related units: “Tropical-subtropical lowland rainforest”, “Tropical flooded forests and peat forests”, “Tropical heath forests”, “Pyric tussock savannas”, “Hummock savannas”. Refs.: FAO (1965), Huber (1988), Huber and Riina (1997), Camaripano-Venero and Castillo (2003), Morales and Castillo (2005), Rangel et al (1995), Rangel ed. (2008), Huber and Oliveira-Miranda (2010), Minorta-Cely (2020), Safont (2015), Navarro (2021), Usma et al. (2022).

Figure 14. 

Lowland evergreen guyanan forest and savanna geocomplex. 1. Evergreen seasonal sclerophyllous woodland-savanna: Platycarpum orinocense-Vochysia venezuelensis communities. Moderately deep and medium drained woodland on sandy-lateritic soils 2. Successional pyrophytic-oligotrophic open woodland-savanna: Byrsonima crassifolia-Curatella americana communities with herbaceous savanna: Axonopus purpusi – Paspalum pectinatum communities and Trachypogon plumosus-Schyzachirium sanguineum communities, with Thrasya petrosa, Trachypogon vestitus. Pisolitic-lateritic medium-well drained soils, with eolic sandy or loessic cover 3. Seasonally flooded oligotrophic open herbaceous savanna: Schizachyrium brevifolium-Trachypogon spicatus and Andropogon leucostachyus-Sorghastrum setosum communities. 4. Palm-forest: Euterpe precatoria-Mauritia flexuosa communities. Lentic streams and topographic depressions permanently flooded by dystrophic black water. 5. Aquatic vegetation of lakes and swamps. 6. Flooded evergreen forest: Lecythis ollaria-Eschweilera tenuifolia-Macrolobium multijugum communities with Campsiandra implexicaulis, C. macrocarpa. Evergreen forest on alluvial floodplain of clear water rivers. 7. Clear water riparian palm-woodland: Mauritiella armata communities. 8. Saxicolous vegetation: Vellozia tubiflora communities. Precambrian domed rocky outcrops (inselbergs). 9. Semideciduous forest: Vochysia venezuelense-Anadenanthera peregrina communities with Caraipa llanorum, Hymenaea courbaril, Myroxylon balsamum, etc. Sandy excessively well drained soils on low hillsides and basis of inselberg. 10. Evergreen western guyanan forest: Ruizterania retusa-Chaetocarpus schomburgkianus communities. Deep well-drained lateritic soils above shield crystalline rocks. Graphic geobotanical interpretation based on cited references, our own field data (Cinaruco river to Puerto Ayacucho transect) and Google Earth images.

A.14. Lowland seasonally flooded forest & shrubland geocomplex “Várzea ” (Fig. 15) [Biogeography: Amazonian, Guyanan regions]. Representative type locality: generalized transect in lower Beni River, between Riberalta and Cachuela Esperanza, ca 10°40'S (northern Beni/Pando Departments, Bolivia). Altitude: 140–150 m. Known analogous areas (homoplasyc geobiomes): SW Venezuela, SE Colombia, E Ecuador, E Perú, N Brazil, Guianas, N Bolivia. Bioclime: infratropical pluviseasonal humid. IUCN related units: “Tropical-subtropical lowland rainforest”, “Tropical flooded forests and peat forests”. Refs.: Rizzini (1979), Encarnación (1985), Salo et al. (1986), Huber (1988), Klinge et al. (1995), Duivenboorden and Lips (1995), Junk (1997), Urrrego (1997), Rangel ed. (1997), Joly et al. (1999), Sierra et al. (1999), Morales and Castillo (2005), Rangel ed. (2008), Navarro and Maldonado (2002), Camaripano-Venero and Castillo (2003), Encarnación et al. (2007), Josse et al. (2003, 2007, 2009), Romero et al. (2004), Navarro (2011), Díaz and Rosales (2006), Sayre et al. (2008), Huber and Oliveira-Miranda (2010).

Figure 15. 

Lowland seasonally flooded forest & shrubland geocomplex “várzea” A) Recent alluvial floodplain. Riverine beaches: 1. Riparian reed-grassland: Paspalum fasciculatum-Echinochloa polystachia community. Amazonian white-water riverine successional vegetation on seasonally flooded muddy substrates of the riverside-beaches. 2. Evergreen seasonal riparian thicket: Salix humboldtiana-Tessaria integrifolia community. Amazonian white-water riverine successional vegetation on seasonally flooded muddy substrates of fore-beaches. 3. Riparian cane-shrubland: Gynerium sagittatum communities. Amazonian white-water riverine successional vegetation on seasonally flooded sand-muddy substrates of fore-beaches. 4. Evergreen seasonal riparian woodland: Croton draconoides-Cecropia membranacea community. Seasonally flooded with white-water riverine successional vegetation on back-beaches. Meander floodplain: 5. Inmature riparian flooded forest: Guarea guidonia-Ficus insipida community. Seasonally white-water flooded with sand-muddy substrates and unstable soils of recent point-bars. 6. White-water Amazonian forbland: Heliconia marginata communities. Megaforb helophytic vegetation on seasonally flooded meander plain channels (active, semiactive and inactive). 7. Amazonian lacustrine custard-apple woodland: Alchornea castaneifolia-Annona hypoglauca community. Shores of ox-bow lakes and flooded paleochannel shores. 8. Amazonian aquatic vegetation: Nymphaea amazonum-Eicchornia azurea communities. Ox-bow lakes and ponds. 9. Mature flooded forest (“Fluvic Várzea forest”): Manilkara inundata-Pouteria bilocularis community. Meander floodplain levees and point-bars with white water regular flowing-floods on some stabilized soils. B) Old alluvial flood plain. 10. Flood-plain depressions: Backswamp forest (“Stagnic Várzea forest”): Calycophyllum spruceanum-Hura crepitans community with Attalea butyracea. Old alluvial floodplain with episodic white water stagnant floods. C) Upland (“Terra firme”). 11. Evergreen seasonal peneplain forest: Apuleia leiocarpa-Bertholletia excelsa community. Zonal mature southwestwen Amazonian Forest of ondulated lateritic upland peneplains on tertiary materials. Graphic geobotanical interpretation based on our own field data in Beni and high Madeira rivers, and Google Earth images.

A.15. Coastal brazilian restinga geocomplex (Fig. 16) [Biogeography: Brazilian-Paranean Region, Brazilian Atlantic Province, Atlantic sector]. Representative type locality: Arembepe-Guarajuba (12°40'S) and Cacha Pregos, (13°07'S) transects synthesis, Salvador do Bahia, Brazil. Altitude: 0–50 m. Known analogous distribution areas (homoplasyc geobiomes): E Atlantic Brazil. Bioclimes: infratropical pluvial and pluviseasonal humid. IUCN related units: “Coastal shrublands and grasslands” “Intertidal forests and shrublands”, “Coastal saltmarshes and reedbeds”, “Sandy Shorelines”, “Muddy shorelines”, “Tropical-subtropical lowland rainforest”. Refs.: Rizzini (1979), Veloso et al. (1991), Navarro (1996), Joly et al. (1999), Andrade (reed. 2007), Lorenzi (2008, 2009), Stehman et al. (2009), Felfili et al. Eds (2011), Silva et al. (2013), Queiroz et al. (2017), IBGE (2019).

Figure 16. 

Coastal brazilian restinga geocomplex. Sand system (beaches and dune complexes) to Precambrian shield transect: 1. Pioneer herbaceous sand beaches vegetation: Sesuvium portulacastrum-Ipomoea pes-caprae subsp. brasiliensis community. Back beach-berm. 2. Coastal palm woodland: Ipomoea pes-caprae brasiliensis-Cocos nucifera communities. Semifixed recent micro-meso dunes with organo-detritic brown sands. 3. Aquatic vegetation: Cabomba aquatica-Eleocharis interstincta communities. Shallow coastal lagoons and interdune depressions with oligotrophic waters. 4. Evergreen seasonal coastal woodland and shrubland: Pilosocereus pentaedrophorus-Kielmeyera argentea communities with Allagoptera brevicalyx, A. arenaria, Jacquinia armillaris, Manilkara salzmannii, Melocactus violaceus, Schinus terebinthifolius, Clusia spp., Protium bahianum, Syagrus schizophylla, etc. Fixed pleistocene meso-macrodunes with white quartz sands. 5. Evergreen seasonally flooded atlantic forest with Bactris setosa. Precambric shield piedmont. 6. Evergreen Atlantic Forest: Astronium concinnum-Sloanea eichleri communities. Brazilian precambric shield, gneiss and quartz (ferralsols, acrisols). Mud sytem (estuary mouth): 7. Coastal reedbed: Spartina brasiliensis communities. Estuarine bars with sand-muddy substrates with sulfidic materials (thionic estagnic fluvisols). 8. Coastal flooded woodland (Mangrove): Laguncularia racemosa- Rhizophora mangle communities. Estuarine islands with grey to blackish organo-detrital muds (thionic stagnic fluvisols). Graphic geobotanical interpretation based on cited references, our own 1996 field data (Salvador do Bahia) and Google Earth images.

A.16. Montane evergreen seasonal woodland geocomplex (Fig. 17) [Biogeography: Tropical South Andean Region, Mesophytic Puna Province]. Representative type locality: Cordillera del Tunari, Cochabamba department, Bolivia, ca. 17°14'S. Altitude: 3620 m. Known analogous distribution áreas (homoplasyc geobiomes): tropical Andes of Argentina, Bolivia, Perú, Ecuador, Colombia, Venezuela. Bioclime: Supratropical pluviseasonal subhumid. IUCN related units: “Tropical-subtropical montane rainforests”. Refs.: Sierra (1999), Josse et al. (2003, 2007), Navarro (2004, 2005, 2011), Navarro and Ferreira (2007), Navarro and Maldonado (2002), Sayre et al. (2008).

Figure 17. 

Montane evergreen seasonal woodland geocomplex. 1. Saxicolous vegetation: Puya glabrescens-Trichocereus tunariensis community with Lobivia maximiliana. Upper montane rocks & cliffs. 2. Evergreen seasonal sub-sclerophyllous woodland: Berberis commutata-Polylepis subtusalbida community. Zonal upper montane subhumid pluviseasonal vegetation. 3. Bunch-grassland & thicket: Baccharis papillosa-Poa asperiflora community. Upper montane seral/successional vegetation. 4. Montane swamp reedbed: Juncus microcephalus communities. 5. Montane riverine aquatic vegetation: Calceolaria aquatica-Mimulus glabratus community. Flowing water stream vegetation (lotic). 6. Riparian forest: Vallea stipularis-Alnus acuminata community. Seasonally flooded riverine forest (lotic). 7. Riparian tussock-grassland: Equisetum bogotense-Cortaderia rudiuscula community. Lotic successional riverine vegetation with intermittently o episodic flooding. 8. Scree vegetation: Senecio clivicola communities. Upper montaneabrupt hillside rock-scree vegetation. Graphic geobotanical interpretation based on our field transect data and cited references.

A.17. Montane evergreen seasonal and deciduous forest & woodland geocomplex (Fig. 18) [Biogeography: Tropical South Andean region, Bolivian-Tucuman Province]. Representative type locality: Entre Ríos transects synthesis, Tarija department, Bolivia, ca. 21°30'S). Altitude: 1600–4000 m. Known analogous distribution areas (homoplasyc geobiomes): C & S Bolivia, NW & CW Argentina. Bioclime: mesotropical xeric dry and meso-supratropical pluviseasonal subhumid-humid. IUCN related units: “Seasonally dry tropical shrublands”, “Tropical-subtropical dry forests and thickets”. Refs.: Cabido et al. (1991), Navarro et al. (1996), Josse et al. (2003, 2007), Navarro (2004, 2005, 2011), Navarro and Maldonado (2002), Sayre et al. (2008), Josse (2014), Martínez-Carretero et al. (2016), Oyarzábal et al (2018), Entrocassi et al. (2020).

Figure 18. 

Montane evergreen seasonal and deciduous forest & woodland geocomplex. 1. Evergreen seasonal woodland: Escallonia hypoglauca-Polylepis crista-gallii community. Zonal high-montane humid pluviseasonal vegetation. 2. Bunch-grasslands & thickets: Aristida mandoniana-Festuca hieronymi communities. 3200-4000 m. High-montane seral/successional communities 3. Saxicolous vegetation: Rebutia fiebrigii-Cleistocactus straussii communities. 3200-3800 m. High-montane cliffs and rocks vegetation. 4. Flooded deciduous forest: Vallesia glabra-Alnus acuminata community. Seasonally or intermitently flooded riverine forest (lotic). 5. Riparian tussock-grassland: Cortaderia rudiuscula communities. Lotic successional riverine vegetation with seasonal to episodic flooding. 6. Evergreen seasonal forest: Prunus tucumanensis-Podocarpus parlatorei community. Zonal montane humid pluviseasonal forest and woodland. 7. Evergreen seasonal woodland (Sahuintal): Myrcianthes callicoma-Myrcianthes pseudomato community. Intrazonal wet basin headwater vegetation. 8. Deciduous forest: Parapiptadenia excelsa-Tipuana tipu community. Zonal montane pluviseasonal subhumid vegetation. 9. Deciduous thorn woodland and shrubland: Trichocereus terscheckii-Schinopsis haenkeana community. Zonal rain-shadow interandean valleys dry vegetation. 10. Evergreen seasonal forest: Phoebe porphyria-]uglans australis community. Zonal low-montane humid pluviseasonal vegetation. Graphic geobotanical interpretation based on our numerous field transect data (from 1990 to 2020) and cited references.

A.18. Lowland evergreen seasonal and deciduous geocomplex (Fig. 19) [Biogeography: Brazilian Atlantic Province, Paraná Sector]. Representive type locality: Caaguazú (Paraguay), ca. 25°26'S. Altitude: 350–600 m. Known analogous distribution areas (homoplasyc geobiomes): E Brazil, E Paraguay. Bioclime: infratropical-termotropical pluviseasonal humid. IUCN related units: “Tropical-subtropical lowland rainforest”, “Tropical-subtropical dry forest and thickets”. Refs.: Rizzini (1979), López et al. (1987), Lorenzi (2008, 2009).

Figure 19. 

Lowland evergreen seasonal and deciduous geocomplex. 1. Tropical lowland saxicolous outcrop vegetation: Notocactus, Frailea, Dyckia, Tillandsia communities. Precambric rock outcrops. 2. Seasonally dry deciduous woodland: Tabebuia pulcherrima-Protium heptaphyllum community. Excesively well-drained stony leptosols. 3. Evergreen seasonal forest: Tabebuia impetiginosa-Anadenanthera colubrina community. Well-drained deep sandy-stony soils. 4. Evergreen Atlantic forest: Piptadenia rigida-Balfourodendron riedelianum community, with Peltophorum dubium, Apuleia leiocarpa, Cedrela fissilis. Zonal deep soils. 5. Flooded Forest: Nectandra angustifolia-Luehea divaricata community. Seasonally flooded alluvial plain. 6. Flooded riparian forest: Guadua angustifolia-Copaifera langsdorfii community. Riverine banks and alluvial plain. Lotic. Graphic geobotanical interpretation based on cited references, our own field data (Asunción-Caaguazú transect) and Google Earth images.

A.19. Lowland deciduous forest & sclerophyllous woodland geocomplex (Fig. 20) [Biogeography: Western Cerrado Province]. Representive type locality: Lomerío transects synthesis, Concepción, Ñuflo de Chávez provincia, Chiquitanía (Santa Cruz, Bolivia), ca. 16°35'S. Altitude: 400–500 m. Known analogous distribution areas (homoplasyc geobiomes): S Venezuela, E Colombia, W Ecuador, E Bolivia, CW Brazil, NE Paraguay. Bioclime: low termotropical pluviseasonal subhumid. IUCN related units: “Tropical-subtropical dry forest and thickets”, “Seasonally dry tropical shrublands”, “Pyric tussock savannas”, “Hummock savannas”. Refs.: Rizzini (1979), Veloso et al. (1991), Ribeiro and Teles (1998), Rodal and Sampaio (2002), Silva and Abdón (1998), Joly et al. (1999), Giulietti et al. (2003), Josse et al. (2003, 2007), Aguirre-Mendoza et al. (2006), Sayre et al. (2008), Lorenzi (2008, 2009), Navarro (2011), Navarro and Maldonado (2002), Aymard and González (2013).

Figure 20. 

Lowland deciduous forest & sclerophyllous woodland geocomplex. 1. Deciduous woodland: Machaerium acutifolium-Myracruodruon urundeuva community (“Cerradão). Low forest on hillsides stony soils (ferric regosols). 2 Non flooded savanna (“Cerrado rupestre”, “Campo rupestre”). Edaphoxerophyllous communities on mountaintops with rocky soils (lithic and ferric regosols). 3. Deciduous Forest: Machaerium scleroxylon-Schinopsis brasiliensis community. Tall dry deciduous to semideciduous fores. Deep well drained soils (ferralsols, cambisols). 4. Evergreen seasonal flooded forest: Cariniana ianeirensis-Vitex cymosa community. Poorly drained floodable soils on valley bottom (fluvisols, gleysols). 5. Evergreen seasonal riparian forest: Lonchocarpus pluvialis-Inga nobilis community. Seasonally flooded (fluvisols) with flowing waters (lotic). Fluvisols. 6. Evergreen seasonal sclerophyllous woodland-savanna (“Cerrado”): Salvertia convalliodora-Caryocar brasiliense community, with Priogymnanthus hasslerianus. Dystrophic lateritic well-drained soils (plinthosols, ferralsols, acrisols). 7. Flooded open arboreal savanna: Genipa americana-Tabebuia heptaphylla community. Hummocky dystrophic seasonally ponded soils (estagnosols). 8. Flooded herbaceous savanna: Schizachyrium microstachyum-Sorghastrum setosum community on oligotrophic stagnosols; and associated aquatic/ hidrophylic vegetation. 9. Evergreen seasonal sclerophyllous woodland on poorly drained soils: Tabebuia heptaphylla-Callisthene fasciculata community. 10. Inselberg saxicolous vegetation: Sapium argutum-Commiphora leptophloeos community. Leptic regosols on cristaline precambric rocks (gneiss and granites). Graphic geobotanical interpretation based on cited references, our own field data (Concepción to San Antonio de Lomerío transects) and Google Earth images.

A.20. Lowland deciduous thorn woodland & shrubland geocomplex (Fig. 21) [Biogeography: Chaco Region, North Chaco Province]. Representative Type locality: Southeastern Bañados de Izozog to Parapetí River transects synthesis, Santa Cruz, Bolivia, ca. 19°S. Altitude: 350–420 m. Known analogous distribution áreas (homoplasyc geobiomes): S Bolivia, N Paraguay, N Argentina, SW Brazil (Chaco), NE Brazil (Caatinga), N Venezuela and Colombia (Guajira), W Ecuador (Guayaquil province), NW Perú (Tumbes). Bioclime: termotropical xeric dry and semiarid. IUCN related units: “Seasonally dry tropical shrublands”, “Thorny deserts and semi-deserts”. Refs.: López (1984), López et al. (1987), Cabido et al. (1994), Josse and Balslev (1994), Mereles and Degen (1994, 1998), Rodal and Sampaio (2002), Giulietti et al. (2003), Josse et al. (2003, 2007), Sayre et al. (2008), Navarro (2004, 2005, 2011), Navarro and Maldonado (2002), Navarro et al. (2006) Aguirre-Mendoza et al. (2006), Martínez-Carretero et al. (2016).

Figure 21. 

Lowland deciduous thorn woodland & shrubland geocomplex. 1. Deciduous thorn-woodland and shrubland: Senegalia emilioana-Schinopsis quebracho-colorado community. Zonal medium drained clay-silty soils (regosols and luvisols). 2. Deciduous woodland on deep sandy soils: Senegalia emilioana-Schinopsis cornuta community. Sand dunes and eolic surfaces (arenosols). 3. Flooded palm-woodland: Prosopis ruscifolia-Copernicia alba community. Interdune temporarily ponded depressions (clay solonchaks). 4. Xeromorphic shrubland: Aspidosperma triternatum-Bulnesia sarmientoi community. Poorly drained clay soils with strong gilgai microrelief (eutric vertisols). 5. Phreatophyllous thorn-woodland: Vallesia glabra-Prosopis chilensis community. Alluvial clay silty soils with shallow water table (gleyic luvisols). 6. Seasonally flooded thorn-woodland: Coccoloba guaranitica-Geoffroea spinosa community. Seasonally ponded with stagnant waters (gilgai vertisols and stagnosols). 7. Palm-woodland: Triplaris gardneriana-Copernicia alba community. Seasonally flooded with mesotrophic flowing waters (sodic humic eutric vertisols and fluvisols). 8. Riverine forest: Crataeva tapia-Albizia inundata community. Seasonally flooded with mesotrophic flowing waters (gleyic humic eutric fluvisols). Graphic geobotanical interpretation based on cited references, our own numerous field data (1993 to 1998), and Google Earth images.

A.21. Lowland deciduous thorn woodland & shrubland geocomplex (Fig. 22) [Biogeography: Brazilean-Paranense Region, Caatinga Province]. Representative Type locality: Sr. Bonfim-Capim Grosso- Juazeiro-Curaçá transects synthesis, Bahia, Brazil, ca. 12°15'S. Altitude: 350–420 m. Known analogous distribution áreas (homoplasyc geobiomes): S Bolivia, N Paraguay, N Argentina, SW Brazil (Chaco), NE Brazil (Caatinga), N Venezuela and Colombia (Guajira), SW Ecuador (Guayaquil province), NW Perú (Tumbes). Bioclime: infratropical xeric dry and semiarid. IUCN related units: “Seasonally dry tropical shrublands”, “Thorny deserts and semi-deserts”. Refs.: Veloso et al. (1991), Josse and Balslev (1994), Rodal and Sampaio (2002), Giulietti et al. (2003), Josse et al. (2003, 2007), Sayre et al. (2008), Lorenzi (2008, 2009), Felfili et al. (2011), IBGE (2019).

Figure 22. 

Lowland deciduous thorn woodland & shrubland geocomplex. 1. Saxicolous vegetation: Zehntnerella squamulosa community. Gneiss rock outcrops 2. Deciduous succulent thorn-woodland: Pilosocereus pachycladus-Mimosa tenuiflora community, with Melocactus zehntneri, Senegalia bahiensis, Syagrus coronata, Cereus jamacaru, Pilosocereus gounelleii, etc. Hillsides with stony (quartz and gneiss) squeletic regosols. 3. Deciduous succulent thorn-woodland and shrubland: Espostoopsis dybowskii-Caesalpinia laxiflora community, with Pilosocereus pentaedrophorus, P. pachycladus, Leocereus bahiensis, Commiphora leptophloeos, Opuntia inamoena, etc. (in Juazeiro region). Extensive glacis and plains with sandy-loamy soils (arenic regosols and luvisols). 3’ Deciduous succulent thorn-woodland and shrubland: Pilosocereus catingicola-Caesalpinia pyramidalis community, with Syagrus coronata, Cnidoscolus phyllacanthus, Pseudobombax simplicifolium, etc. (in Senhor de Bonfim-Riacho Jacuípe region). Extensive glacis and plains with sandy-loamy soils (arenic regosols and luvisols). 4. Phreatophyllous thorn-woodland: Parkinsonia aculeata-Prosopis juliflora community. Clay-silty soils with shallow water table (gleyic luvisols). 5. Flooded palm-woodland: Geoffroea spinosa-Copernicia prunifera community with Acacia piauhyensis, Ruprechtia laxiflora, Zizyphus joazeiro. Seasonally flooded alluvial plains of São Francisco River (sodic humic vertisols and fluvisols). Graphic geobotanical interpretation based on our own field transect data in Bahia (1996) and cited references.

A.22. Lowland deciduous thorn woodland & shrubland geocomplex (Fig. 23) [Biogeography: Guayaquil province]. Representative Type locality: Puerto López to Agua Blanca transect, Manabí, Ecuador, ca. 01°35'S. Altitude: 35–50 m. Known analogous distribution áreas (homoplasyc geobiomes): S Bolivia, N Paraguay, N Argentina, SW Brazil (Chaco), NE Brazil (Caatinga), N Venezuela and Colombia (Guajira), SW Ecuador, NW Perú (Tumbes). Bioclimes: infratropical xeric dry and semiarid. IUCN related units: “Seasonally dry tropical shrublands”, “Thorny deserts and semi-deserts”. Refs.: Josse and Balslev (1994), Sierra et al. (1999), Josse et al. (2003, 2007), Sayre et al. (2008), MAE (2012), Aguirre-Mendoza et al. (2006a, b, 2012).

Figure 23. 

Lowland deciduous thorn woodland & shrubland geocomplex. 1. Deciduous succulent thorn-woodland: Pilosocereus tweeddianus-Cordia lutea community, with Armatocereus cartwrightianus, Caesalpinia corymbosa, Bursera graveolens, Jacquinia pubescens, Capparis spp., etc. Coastal limestone hillsides (clay-stony vertisols). 2. Phreatophyllous thorn-woodland: Tecoma castaneifolia-Prosopis juliflora community. Glacis and plains, with clay-silty soilS. Shallow water tables (gleyic luvisols). 3. Riparian flooded shrubland and woodland: Muntingia calabura-Pluchea absinthioides community. Seasonally flooded alluvial plains of intermitent streams. Graphic geobotanical interpretation based on our own field transect data (2010) and cited references.

A.23. montane deciduous thorn woodland & shrubland geocomplex (Fig. 24) [Biogeography: Tropical South Andean region, Bolivian-Tucuman Province]. Representative type locality: Aiquile-Pasorapa transects synthesis, Cochabamba department, Bolivia, ca. 18°17'S. Altitude: 1300–2400 m. Known analogous distribution areas (homoplasyc geobiomes): C and S Bolivia, NW and CW Argentina. Bioclime: termo-mesotropical xeric semiarid-dry. IUCN related units: “Seasonally dry tropical shrublands”, “Tropical-subtropical dry forests and thickets”. Refs.: Cabido et al. (1991), Navarro et al. (1996), Josse et al. (2003, 2007), Sayre et al. (2008), Navarro (2004, 2005, 2011), Navarro and Maldonado (2002), Navarro (2011), Martínez-Carretero et al. (2016), Entrocassi et al. (2020).

Figure 24. 

Montane deciduous thorn woodland & shrubland geocomplex. 1. Riparian pioneer thicket: Equisetum bogotensis-Tessaria absynthioides community. Pioneer successional riverine vegetation with intermitently to episodic irregular flooding 2. Intermitently flooded riverine successional shrubland: Baccharis salicifolia communities. 3. Riparian forest: Pisoniella arborescens-Salix humboldtiana community. Montane interandean seasonally flooded riverine forest. 4. Phreatophyllous thorn-woodland: Acacia visco-Prosopis alba community. Alluvial floodplain with shallow water tables. 5. Deciduous thorn woodland & shrubland: Neocardenasia herzogiana-Schinopsis haenkeana community (1400-1900 m) and Espostoa guentherii-Loxopterygium grisebachi (< 1400 m) community. Interandean low-montane dry and semiarid zonal vegetation. 6. Saxicolous vegetation: Barbaceniopsis boliviana-Deuterocohnia longipetala community. Interandean montane azonal saxicolous vegetation. 7. Deciduous thorn woodland: Cardenasiodendron brachypterum-Schinopsis haenkeana community. Interandean montane dry zonal vegetation. 8. Evergreen seasonal riparian woodland: Pisonia ambigua-Myroxylon peruiferum community. Interandean montane stream vegetation with irregular or episodic flooding. 9. Deciduous forest and woodland: Jacaranda mimosifolia-Tipuana tipu community. Interandean montane dry and lower subhumid zonal vegetation. Graphic geobotanical interpretation based on our numerous field transect data (from 1990 to 2020) and cited references.

A.24. Foggy tropical hyperdesert geocomplex (Fig. 25) [Biogeography: Hyperdesertic Tropical Pacific Region, Hyperdesertic Tropical Chilean-Arequipan Province]. Representative type locality: Tacna to Tarata transect, Perú, ca. 17°48'S. Altitude: 0–2700 m. Known analogous distribution areas (homoplasyc geobiomes): W Perú, NW Chile. Bioclime: Thermotropical and low mesotropical hyperdesertic hyperarid-arid. IUCN related units: “Hyper-arid deserts”. Refs.: Rundel et al. (1991), Gajardo (1994), Marquet et al. (1998), Luebert and Gajardo (2005), Josse et al. (2003, 2007), Sayre et al. (2008), Luebert and Pliscoff (2006), Pinto et al. (2006), Pinto and Luebert (2009), Galán et al. (2002, 2004, 2009, 2011), Navarro (2021).

Figure 25. 

Foggy tropical hyperdesert geocomplex. 1. Foggy coastal hyperdesert: Eryosice islayensis-Haageocereus australis community. Cacti disperse communities on coastal sandy microdunes “lomas”. 2. Not vegetated coastal hyperdesert. Bare sandy eolic coastal surfaces. 3. Foggy coastal hyperdesert: Tillandsia werdermannii community. Piedmont glacis with sandy eolic cover. 4. Not vegetated interior hyperdesert. Low-montane piedmont glacis and pediments with sandy eolic cover. 5. Flooded woodland and shrubland: Solanum chilense-Tecoma fulva community. Seasonal allochtonous streams riparian desert vegetation. 6. Desert open vegetation: Haageocereus platinospinus-Browningia candelaris community. Rocky soils of low-montane hillside slopes. Graphic geobotanical interpretation based on our field transect data (1993) and cited references.

A.25. Foggy tropical hyperdesert geocomplex (Fig. 26) [Biogeography: Hyperdesertic Tropical Pacific Region, Hyperdesertic Tropical Chilean-Arequipan Province]. Representative type locality: Southern Iquique to Pampa del Tamarugal transects synthesis, Chile, ca. 20°18'S. Altitude: 0–800 m. Known analogous distribution areas (homoplasyc geobiomes): NW Chile, SW Perú. Bioclime: upper thermotropical to low mesotropical hyperdesertic hyperarid. IUCN related units: “Hyper-arid deserts”. Refs.: Rundel et al. (1991), Navarro and Rivas-Martínez (1994b), Gajardo (1994), Marquet et al. (1998), Josse et al. (2003, 2007), Sayre et al. (2008), Luebert and Pliscoff (2006), Pinto et al. (2006), Pinto and Luebert (2009), Galán et al. (2002, 2004, 2009, 2011), Navarro (2021), Amigo et al. (2022a, b).

Figure 26. 

Foggy tropical hyperdesert geocomplex. 1. Foggy coastal hyperdesert: Ephedra breana-Eulychnia iquiquensis community. Xeromorphic shrubland and thicket with cacti and succulents. Relictic on abrupt coastal cliffs and screes with Eulychnia population partially death. Windswept sands covering rocky substrates. Moderate to strong incidence of seasonal coastal fogs. 2. Foggy tillandsia hyperdesert: Tillandsia landbeckii community. Sandy mesodunes with persistent seasonal fogs. 3. Not vegetated hyperdesert. Bare desertic rocky pavement in sandy matrix. 4. Not vegetated hyperdesert. Salt flats without vascular vegetation (“Salar Grande”). 5. Deciduous thorn shrubland: Phreatophyllous disperse Prosopis tamarugo shrubs on salar microdunes. 6. Deciduous thorn woodland and shrubland: Caesalpinia aphylla-Prosopis tamarugo community. Open phreatophyllous saline vegetation in anastomosed silt channels with seasonal ephemeral drainage. Pampa del Tamarugal, Salar de Pintados. Graphic geobotanical interpretation based on our field transect data (1995) and cited references.

A.26. Lowland flooded savanna and woodland geocomplex (Fig. 27) [Biogeography: Brazilean-Paranean Region, Beni Province]. Representive type locality: Northeastern Trinidad, Beni, Bolivia. ca. 14°25'S. Altitude: 150 m. Known analogous distribution areas (homoplasyc geobiomes): E Bolivia, SW Venezuela, E Colombia. Bioclime: infratropical pluviseasonal humid. IUCN related units: “Pyric tussock savannas”, “Hummock savannas”, “Permanent marshes”, “Seasonal floodplain marshes”, “Tropical flooded forests and peat forests”. Refs.: Navarro and Maldonado (2002), Josse et al. (2003, 2009), Boixadera et al. (2003), Pouilly et al. (2004), Sayre et al. (2008), Navarro (2011), Navarro et al. (2013), Aymard and González (2013).

Figure 27. 

Lowland flooded savanna and woodland geocomplex. 1. Deciduous phreatophyllous forest: Swartzia jorori-Anadenanthera colubrina community. Shallow water tables, on upland fluvial paleo-levées (sandy-loamy gleysols). 2. Palm woodland: Piptadenia robusta-Copernicia alba community. Temporarily ponded sodium-alkaline soils with gilgai microrelief on semi-elevations (planosols, vertisols). 3. Ponded herbaceous savanna: Paspalum plicatulum-Paspalum virgatum community. Mesotrophic soils on temporarily ponded topographic semi-elevations. 4. Flooded riparian forest: Croton sampatik-Albizia inundata community. Seasonally flooded savanna streams levees (fluvic). 5. Flooded open Palm savanna: Combretum laxum-Copernicia alba community. Mesotrophic soils (planosols, gleysols). Seasonally flooded alluvial plain. 6. Semipermanently ponded herbaceous hummocky savanna: Arundinella hispida-Hypogynium virgatum community. Ancient alluvial floodplain topographic depressions with oligotrophic soils. 7. Seasonally flooded herbaceous savanna: Paspalum fasciculatum community. Recent alluvial floodplain with flowing white waters. 8. Swamp woodland: Ludwigia peruviana-Tabebuia insignis community. Ancient alluvial floodplain, in lakes and ponds with deep histic hydromorphic soils (tropical saprimoor). 9. Marshland: Rhabdadenia pohlii-Cyperus giganteus. “Junquillo” sedge-marsh communities in swamps and lakes with semi-floating hydromorphic soils (tropical fibrimor). 10. Aquatic Beni vegetation: Cabomba furcata-Nymphaea amazonum communities. 11. Temporarily ponded woodland: Tabebuia heptaphylla-Callisthene fasciculata community. Precambric shield lateritic pedeplain of Beni transitional to Cerrado in semi-elevations. Termite-mound oligotrophic soils (stagnosols, gleysols). 12. Seasonally flooded woodland: Byrsonima orbignyana-Tabebuia heptaphylla community. North Beni lateritic pedeplain transitional to Cerrado in oligotrophic soils (gleysols). Graphic geobotanical interpretation based on cited references, our own field data (Trinidad-San Ramón del Beni transects) and Google Earth images.

A.27. Lowland flooded savanna and woodland geocomplex (Fig. 28) [Biogeography: Brazilean-Paranean Region, Pantanal Province]. Representive type locality: San Matías and Otuquis Pantanal transect synthesis, Eastern Santa Cruz department, Bolivia, ca. 16°56'S. Altitude: 110–120 m. Known analogous distribution areas (homoplasyc geobiomes): C-W Brazil, SE Bolivia; NE Paraguay, NE Argentina. Bioclime: infratropical and termotropical pluviseasonal subhumid. IUCN related units: “Pyric tussock savannas”, “Hummock savannas”, “Permanent marshes”, “Seasonal floodplain marshes”. Refs.: Rizzini (1979), Veloso et al. (1991), Pott and Pott (1997), Silva and Abdon (1998), Joly et al. (1999), Josse et al. (2003, 2007), Navarro (2011), IBGE (2019).

Figure 28. 

Lowland flooded savanna and woodland geocomplex. 1. Deciduous woodland: Schinopsis brasiliensis-Lonchocarpus nudiflorens community. Drought deciduous to semideciduous Chiquitano forest on poorly drained soils of semi-upland areas with shallow phreatic levels (gleyic luvisols). 2. Seasonal evergreen sclerophyllous woodland: Attalea eichleri-Hymenaea stigonocarpa community. Precambric shield pediment with deep sand-eolic cover (arenic ferralsols). 3. Palm woodland: Copernicia alba-Tabebuia heptaphylla community. Seasonally ponded alluvial plain semi elevations on eutric-calcic vertisols and gleyic stagnosols with strong gilgai microrelief and termite mounds. 3. Flooded woodland on oligotrophic semi elevations (paleolevées): Muellera fluvialis-Tabebuia aurea community. Seasonally ponded dystric planosols. 4. Seasonally flooded herbaceous savanna: Cyperus surinamensis-Panicum laxum community. Alluvial seasonally flooded flat depressions. 5. Riverine seasonally flooded forest: Ficus obtusifolia-Sapindus saponaria community. Fluvial riverbanks and recent levées (eutric fluvisols). 6. Seasonally flooded palm-woodland: Microlobius foetidus-Copernicia alba community. Slightly to low flooded alluvial veretic soils (calcic vertisols). 7. Flooded palm-savanna: Triplaris gardneriana-Copernicia alba community. Highly flooded sodic alluvial soils (calcic solonetzs). 8. Ponded woodland: Zygia pithecollobioides-Geoffroea spinosa community. Very poorly drained to seasonally ponded alluvial vertic soils (calcic gleyic vertisols) on fluvial paleo channels. 9. Semipermanently flooded sedge-marsh: Rhabdadenia pohlii-Cyperus giganteus community. Pantanal “Junquillo” communities in swamps and lakes with semi-floating hydromorphic soils (tropical fibrimoor). 10. Pantanal aquatic vegetation. Graphic geobotanical interpretation based on cited references, our own field data (San Matías and Otuquis Bolivian Pantanal), and Google Earth images.

A.28. Lowland flooded savanna and woodland geocomplex (Fig. 29) [Biogeography: Neogranadian Region, Llanos Province, Llanos of Apure]. Representive type locality: Venezuela, Barinas, El Frío transect, Llanos de Apure, ca. 07°52'S. Altitude: 130 m. Known analogous distribution areas (homoplasyc geobiomes): E Bolivia, SW Venezuela, E Colombia. Bioclime: infratropical pluviseasonal humid. IUCN related units: “Pyric tussock savannas”, “Hummock savannas”, “Permanent marshes”, “Seasonal floodplain marshes”, “Tropical flooded forests and peat forests”. Refs.: Castroviejo and López (1985), Rangel ed. (1997), Josse et al. (2003, 2009), Romero et al. (2004), Galán et al. (2006), Sayre et al. (2008), Huber and Oliveira-Miranda (2010), Aymard and González (2013), Guevara (2015), Minorta-Cely (2020).

Figure 29. 

Lowland flooded savanna and woodland geocomplex. 1. Evergreen seasonal forest: Pterocarpus rohrii-Ceiba pentandra communities with Vitex appunii, Sterculia apetala, etc. Flat semi-elevations (“bancos”) with sandy-silty soils and shallow phreatic level. 2. Evergreen seasonal flooded forest: Pisonia macranthocarpa-Hura crepitans community, with Copernicia tectorum, Albizia caribaensis, etc. Levées semi-elevations (“bancos”). 3. Flooded tall-herbaceous savanna: Andropogon virgatum-Panicum junceum communities, with Imperata contracta. Ancient alluvial floodplain topographic depressions with seasonally flooded soils. 4. Flooded riparian forest: Copaifera officinalis-Vitex apuhnii community. Savanna streams levées (“caños”). 5. Flooded shrubland: Coccoloba obtusifolia community. Successional vegetation on riparian stream banks. 6. Flooded low-herbaceous savanna: Paspalum orbiculatum communities. Lakes and ponds margins. 7. Aquatic emergent vegetation: Oxycarium cubensis-Eleocharis interstincta communities. Helophytic vegetation on shallow water. 8. Aquatic floating vegetation: Eichhornia heterosperma-Eichhornia azurea communities, with Eichhornia crassipes, Limnobium laevigatum, Nymphaea spp., etc. Graphic geobotanical interpretation based on cited references, our own field data (Barinas-San Fernando de Apure) and Google Earth images.

A.29. Lowland flooded savanna and woodland geocomplex (Fig. 30) [Biogeography: Neogranadian Region, Llanos Province, Llanos of Meta-Capanaparo)]. Bioclimate: infratropical pluviseasonal humid. Representive type locality: Colombia, Río Arauca-Casanare-Meta, ca. 6°12'N–5°30'N. Interpretation based mainly on Rangel and Minorta-Cely (2014), Minorta-Cely (2020). Altitude: 130–300 m. Known analogous distribution areas (homoplasyc geobiomes): E Bolivia, SW Venezuela, E Colombia. Bioclime: infratropical pluviseasonal humid. IUCN related units: “Pyric tussock savannas”, “Hummock savannas”, “Permanent marshes”, “Seasonal floodplain marshes”, “Tropical flooded forests and peat forests”. Refs.: FAO (1965), Huber and Riina (1997), Camaripano-Venero and Castillo (2003), Morales and Castillo (2005), Rangel et al (1995), Rangel ed. (1997, 2008), Huber and Oliveira-Miranda (2010), Rangel and Minorta-Cely (2014), Minorta-Cely (2020), Usma et al. (2022).

Figure 30. 

Lowland flooded savanna and woodland geocomplex. 1. Andean distal piedmont: alluvial fans and glacis: Evergreen seasonal degraded/successional forest Spondias mombim-Attalea butyracea communities with Copaifera pubiflora. 2. Alluvial polycyclic floodplain vegetation mosaic: 2a- Evergreen seasonally ponded forest: Ocotea cernua-Vitex orinocensis communities. Semi-upland low flat elevations, levees (“bancos”) with shallow phreatic levels; 2b- Evergreen flooded forest: Ceiba pentandra-Luehea seemanii communities with, Brosimum lactescens, Genipa americana, Pseudolmedia laevigata, Virola surinamensis, Vochysia ferruginea. Alluvial white-water flood plain; 2c- Seasonally flooded riparian woodland: Coccoloba ovata-Piranhea trifoliata and Symmeria paniculata-Leptobalanus apetalus (riparian) communities. Clear and black water flood-plain savanna stream (lotic); 2d- Coccoloba mollis-Tessaria integrifolia communities. Riparian white-water successional woodland; 2e- Tall herbaceous-flooded savanna: Hymenachne amplexicaulis-Paspalum repens communities. Ancient white-water alluvial floodplain depressions with seasonally flooded soils (“bajíos”); 2f- Swamps and lagoons aquatic vegetation (“esteros”); 2g- Evergreen woodland and shrublans (“zurales”): Garcinia madruno-Jacaranda obtusifolia communities, with Swartzia pittieri. Floodplain vertisols with gilgai microrelief.3- Old alluvial flood plain with eolic sandy-loessic coberture: 3a. Evergreen seasonal woodlands and low forest: Protium guianensis-Caraipa llanorum communities with Attalea maripa, Eschweilera parvifolia. Well to medium drained lateritic soils of old alluvial plain with sandy-loess coberture and often sallows phreatic levels; 3b- Successional pyrophytic-oligotrophic open woodland-savanna: Byrsonima crassifolia-Curatella americana communities; 3c- Oligotrophic herbaceous savanna: Axonopus purpusi – Paspalum pectinatum and Trachypogon plumosus-Schyzachirium sanguineum communities, with Thrasya petrosa, Trachypogon vestitus. Pisolitic-lateritic medium-well drained soils, with eolic sandy or loessic cover; 3d. Seasonally flooded oligotrophic open herbaceous savanna: Schizachyrium brevifolium-Trachypogon spicatus communities with Andropogon leucostachyus, Rhynchospora corymbosa, Rhynchanthera bracteata, Sacciolepis angustissima, Sorghastrum setosum. 4. Depressional swamp-palm forest: Xylopia calophylla-Mauritia flexuosa communities. Stagnic dystrophic black waters with thic acid humus bottom layers. Graphic geobotanical interpretation based on cited references, and Google Earth images.

B. Mediterranean (Austromediterranean) geocomplex biomes

B.1. High-montane mediterranean geocomplex (Fig. 31) [Biogeography: Mesomediterranean-Patagonian Region, Mediterranean Andean Province]. Representative type locality: Santiago-Farallones-La Cumbre transect, central Chile, ca. 32°52'S. Altitude: 2600 to 2900 m. Known analogous distribution areas (homoplasyc geobiomes): C Chile, CW Argentina. Bioclime: supra-oromeditherranean pluviseasonal subhumid. IUCN related units: “Seasonally dry temperate heaths and shrublands”. Refs: Gajardo (1994), Ramírez et al. (2004), Josse et al. (2003, 2007), Sayre et al. (2008), Luebert and Pliscoff (2006, 2017, 2022), Amigo and Flores-Toro (2012), Oyarzábal et al (2018), Navarro (2021) Amigo et al. (2022a, b).

Figure 31. 

High-montane mediterranean geocomplex. 1. High-montane pulvinate thorn shrubland & thicket: Nardophyllum lanatum-Anarthrophyllum cumingii community, with Nassauvia heterophylla, Junellia spathulata, Berberis empetrifolia, etc. High-montane mediterranean zonal vegetation on well-drained stony soils (skeletic umbrisols). 2. High-montane scree vegetation: Senecio glaber-Nicotiana corymbosa community. Skeletic regosols. 3. High-montane meadows: Colobanthus quitensis-Carex gayana community. Seasonally wet to flooded soils. 4. Aquatic vegetation: Juncus-Eleocharis communities. Shallow high-montane ponds and streams. 5. Cushion-like peatbog: Caltha sagittata-Patosia clandestina community. Permanently flooded or ponded peaty soils. 6. Chionophile subnival vegetation: Calceolaria biflora communities. Semi-permanent snowy niches cavities or depressions. 7. High-montane transition to subnival pulvinate shrubland & thicket: Anarthrophyllum gayanum-Laretia acaulis community, with Triglochin alatum, Poa holciformis, Haplopappus scrobiculatus, Chuquiraga oppositifolia. Well drained stony soils (skeletic umbrisols), associated to cryomorphic open vegetation: Chaetanthera euphrasioides community on leptic cryosols. Graphic interpretation based on our field transect data and cited references.

B.2. Lowland & montane evergreen seasonal sclerophyllous geocomplex (Fig. 32) [Biogeography: Mesomediterranean-Patagonian Region, Central Chilean Province]. Representative type locality: Viña del Mar-Santiago-La Cumbre transects synthesis, Chile, ca. 33°13'S. Altitude: 0–1800 m. Known analogous distribution areas (homoplasyc geobiomes): C Chile. Bioclime: thermomediterranean to upper mesomeditherranean xeric dry and pluviseasonal subhumid. IUCN related units: “Temperate pyric sclerophyll forests and woodlands”. Refs: Villaseñor and Serey (1981), Gajardo (1994), Ramírez et al. (2004), Josse et al. (2003, 2007), Sayre et al. (2008), Luebert and Pliscoff (2006, 2006b, 2022), Amigo and Flores-Toro (2012), Navarro (2021), Amigo et al. (2022a, b).

Figure 32. 

Lowland & montane evergreen seasonal sclerophyllous geocomplex. 1. Benthonic macro algal coastal vegetation: Lessonia trabeculata-Durvillea antarctica communities. 2. Saxicolous aero-halophile vegetation: Calandrinia grandiflora-Nolana crassulifolia community. 3. Saxicolous coastal vegetation: Neoporteria subgibbosa-Trichocereus littoralis community. 4. Evergreen sclerophyllous woodland: Peumus boldus-Cryptocarya alba community. Lowland zonal climacic association to ca. 650 m altitude. 5. Riparian forest and woodland: Persea lingue-Crinodendron patagua communities. Lowland riverbanks vegetation, seasonally flooded. 6. Saxicolous lowland vegetation: Puya chilensis-Trichocereus chilensis community. Rocks and cliffs. 7. Lowland dry sclerophyllous woodland: Quillaja saponaria-Cryptocarya alba communities. On stony north-exposed hillsides. 8. Montane saxicolous vegetation: Puya coerulea communities. 9. Montane evergreen sclerophyllous woodland: Kageneckia oblonga-Quillaja saponaria communities. 10. Secondary dry deciduous thorn woodland: Lithraea caustica-Acacia caven community. In dry rain shadow inner flat valleys with somewhat shallow phreatic levels. 11. Upper montane evergreen sclerophyllous dry woodland: Quillaja saponaria-Lithraea caustica communities, and montane saxicolous shrubland & thicket: Puya coerulea-Trichocereus chiloensis community. 12. Upper montane evergreen sclerophyllous subhumid woodland: Talguenea quinquenervia-Kageneckia angustifolia communities. Graphic interpretation based on our field transect data and cited references.

B.3. Montane xeromorphic shrubby-grassland steppe geocomplex (Fig. 33) [Biogeography: Middle Chilean and Patagonian Region, North Patagonian Province]. Representative type locality: Southern Mendoza, San Rafael transect, Argentina, ca. 34°32'S. Altitude: 1360–1400 m. Known analogous distribution areas (homoplasyc geobiomes): CW Argentina. Bioclime: supramediterranean xeric semiarid. IUCN related units: “Semi-desert steppes”. Refs.: Roig (1972), Cabrera (1976), Boelcke et al. (1985), Roig et al. (1996), León et al. (1998), Collantes et al. (1999), Josse et al. (2003, 2007), Sayre et al. (2008), Roig et al. (2009), Martínez-Carretero et al. (2016), Oyarzábal et al. (2018), Navarro (2021).

Figure 33. 

Montane xeromorphic shrubby-grassland steppe geocomplex. 1. Xeromorphic shrubby-grassland steppe: Colliguaja integerrima-Neosparton aphyllum community. Hillsides with stony excessively well drained soils. 2. Xeromorphic shrubby steppe (on sandy soils): Styllingia patagonica-Cassia arnottiana community. Micro-mesodunes with eolic sandy soils. 3. Phreatophytic xeromorphic shrubby steppe: Hyalis argentea-Neosparton ephedroides community. Ephemeral ravines and depressions with shallow seasonal water table. 4. Saline shrubland: Sarcocornia neei-Heterostachys ritteriana community. Seasonally ponded saline soils. 5. Swamp reedbed: Eleocharis albibracteata-Juncus balticus community. Seasonally ponded marshes. 6. Flooded sedge-marsh: Typha subulata-Schoenoplectus californicus community. Lakes and ponds margins. Graphic interpretation based on our field transect data and cited references.

B.4. Montane subhumid shrubby-grassland steppe geocomplex biome (Fig. 34) [Biogeography: Middle Chilean and Patagonian Region, South Patagonian Province]. Representative type locality: Southern Argentina transect from Andes to Atlantic Ocean, ca. 51°30'S. Altitude: 0–300 m. Known analogous distribution areas (homoplasyc geobiomes): S Argentina. Bioclime: Suprameditherranean xeric dry and pluviseasonal subhumid. IUCN related units: “Temperate subhumid grasslands”. Refs.: Cabrera (1976), Roig et al. (1985), Boelcke et al. (1985), Hildebrand-Vogel et al. (1990), León et al. 1998, Collantes et al. (1999), Barrera et al. (2000), Promis et al. (2008), Oyarzábal et al (2018).

Figure 34. 

Montane subhumid shrubby-grassland steppe geocomplex biome. 1. Humid shrubby-grassland steppe: Gamochaeta nivalis-Festuca gracillima community. Oriental Andean piedmont on humic well-drained soils (umbrisols). 2. Criomorphic open thicket: Oreopolus glacialis-Empetrum rubrum community. Hillside oriental Andean piedmont, with geliturbated soils. 3. Wet bunch-grassland: Festuca pallescens community and peatland bogs: Caltha sagittata communities. 4. Dry shrubby-grassland steppe: Verbena ameghinoi-Festuca gracillima community. 5. Festuca pallescens flooded grasslands and Carex subantarctica-Eriachaenium magellanicum community. Lacustrine litoral aquatic vegetation. 6. Halo-hygrophilous shrubland: Lepidophyllum cupressiformis communities. 7. Saline coastal wetland shrubland and thicket: Frankenia chubutensis-Atriplex macrostyla community. 8. Saline coastal wetland prostrate thicket: Salicornia ambigua-Suaeda argentinensis community. Graphic geobotanical interpretation based on Roig et al. (In Boelcke et al. 1985).

B.5. Montane xeromorphic shrubland & thicket geocomplex (Fig. 35) [Biogeography: Middle Chilean-Patagonian Region, Argentine Monte Province]. Representative type locality: west Sierra Pie de Palo transect, San Juan, Argentina, ca. 31°24'S. Altitude 600–650 m. Analogous known distribution areas (homoplasyc geobiomes): CW Argentina. Bioclime: meso-supra mediterranean desertic arid and xeric semiarid. IUCN related units: “Thorny deserts and semi-deserts”. Refs.: Roig (1972), Roig et al. (1996, 2009), Martínez-Carretero et al. (2016), Navarro (2021), Oyarzábal et al (2018).

Figure 35. 

Montane xeromorphic shrubland & thicket geocomplex. 1. Monte saxicolous vegetation: Tephrocactus halophilus-Deuterocohnia longipetala community. Rock outcrops, and screes. 2. Monte xeromorphic shrubland & thicket: Bulnesia retama-Larrea cuneifolia community. Zonal vegetation on sandy-stony hillsides with well-drained soils. 3. Phreatophyllous xeromorphic shrubland & thicket: Trichomaria usillo-Larrea divaricate-Prosopis flexuosa communities. On flat temporal streambeds and topographic depressions with shallow water table. 4. Deciduous thorn woodland & shrubland: Cyclolepis genistoides-Prosopis flexuosa community. Sub-halophile phreatophytic vegetation. 5. Deciduous thorn woodland & shrubland: Allenrolfea vaginata-Prosopis strombulifera community. Saline wet shrubland temporarily ponded. 6. Saline wetland thicket: Plectrocarpa tetracantha-Sarcocornia neei community. Halophyllous seasonally flooded thorn and succulent thicket. Graphic geobotanical interpretation based on our field transect data and cited references.

B.6. Mediterranean foggy desert geocomplex (Fig. 36) [Biogeography: Middle Chilean-Patagonian Region, Desertic Mediterranean Chilean Province]. Representative type locality: Vallenar-Caldera-Copiapo transects synthesis, Chile, ca. 27°12'S. Altitude: 0–980 m. Known analogous distribution areas (homoplasyc geobiomes): C Chile. Bioclime: termomediterranean and lower mesomediterranean hyperdesertic oceanic. IUCN equivalences: “Hyper-arid deserts”. Refs.: Rundel et al. (1991), Gajardo (1994), Navarro and Rivas-Martínez (1994 b), Marquet et al. (1998), Josse et al. (2003, 2007), Sayre et al. (2008), Luebert and Pliscoff (2006), Pinto et al. (2006), Pinto and Luebert (2009), Galán et al. (2002, 2004, 2009, 2011), Navarro (2021), Amigo et al. (2022a, b).

Figure 36. 

Mediterranean foggy desert geocomplex. 1. Xeromorphic shrubland & thicket: Nolana divaricata-Tetragonia maritima community. Succulent aero-halophile vegetation on coastal beach sand dunes. 2. Xeromorphic scrub: Skytanthus acutus communities. Deep coastal soils. 3. Foggy coastal hyperdesert: Copiapoa cinerea-Eulychnia breviflora tenuis community. Xeromorphic shrubland and thicket with cacti and succulents on granitic boulder stony soils. 4. Phreatophilic coastal scrub: Gypothamnium pinifolium communities. Topographic depressions with shallow temporal water tables 5. Desert open succulent shrubland: Caesalpinia angulicaulis-Eulychnia acida elata community. 6. Open phreatophile-xeromorphic shrubland: Skythanthus acutus-Balsamocarpon brevifolium communities. Temporal ravines with shallow seasonal water tables. 7. Open xeromorphic shrubland: Krameria cistoidea-Bulnesia chilensis communities. Desert zonal vegetation. 8. Desert open ravine shrublands: Atriplex atacamensis-Adesmia argentea community (on temporary arroyo beds) and Nolana sedifolia-Skytanthus acutus community (on recent low fluvial terraces). 9. Thorn woodland and shrubland: Geoffroea decorticans-Schinus molle community. Phreatophylle riparian on temporarily flooded allochthonous streams (arroyos). Graphic geobotanical interpretation based on our field transect data and cited references.

C. Temperate (Austrotemperate) geocomplex biomes

C.1. Montane temperate oceanic evergreen forest geocomplex (Fig. 37) [Biogeography: Valdivian-Magellanian Region, Valdivian Province]. Representative type locality: El Bolsón a Bariloche transect, Río Negro, CWArgentina, ca. 41°40'S. Altitude: 400–900 m. Known analogous distribution areas (homoplasyc geobiomes): CW Argentina, CE Chile. Bioclime: mesotemperate and supratemperate pluviseasonal humid. IUCN related units: “Warm temperate laurophyll forests”. Refs.: Gajardo (1994), Navarro et al (1994d), Donoso (1995), Amigo and Ramírez (1998), Ramírez et al. (2004, 2014), Josse et al. (2003, 2007), Sayre et al. (2008), Luebert and Pliscoff (2006, 2006b, 2022), Amigo and Rodríguez-Guitián (2011), Oyarzábal et al (2018), Navarro (2021), Amigo et al. (2022a, b).

Figure 37. 

Montane temperate oceanic evergreen forest geocomplex. 1. Evergren mixed forest: Austrocedrus chilensis-Nothofagus dombeyii community. Mountain well to medium drained hillside soils. 2. Evergreen coniferous forest: Lomatia hirsuta-Austrocedrus chilensis community. Mountain hillsides and fluvial terraces on stony hyper-drained soils. 3. Flooded deciduous woodland: Laureliopsis philippiana-Nothofagus antarctica community. Seasonally to permanently saturated or ponded flat alluvial bottom valley. 4. Evergreen riparian forest: Boquila trifoliata-Myrceugenia exsucca community. Permanently flooded riverbeds. Lotic. Graphic geobotanical interpretation based on our field transect data and cited references.

C.2. Lowland & montane hyperoceanic temperate forest geocomplex (Fig. 38) [Biogeography: Valdivian-Magellanian Region, Valdivian Province]. Representative type locality: Osorno-Antillanca transects synthesis, Valdivia, Chile, ca. 40°41'S. Altitude: 0–1200 m. Known analogous distribution areas (homoplasyc geobiomes): S Chile, SW Argentina. Bioclime: oceanic mesotemperate-supratemperate hyperhumid-humid. IUCN related units: “Oceanic cool temperate rainforests”, “Boreal and temperate high montane forests and woodlands”. Refs.: Gajardo (1994), Donoso (1995), Amigo and Ramírez (1998), Ramírez et al. (2004, 2014), Josse et al. (2003, 2007), Sayre et al. (2008), Luebert and Pliscoff (2006а, 2006b, 2022), Amigo and Rodríguez-Guitián (2011), Navarro (2021), Amigo et al. (2022a, b).

Figure 38. 

Lowland & montane hyperoceanic temperate forest geocomplex. 1. Coastal thicket: Ambrosia chamissonis communities. Psammophilous vegetation on coastal sand dunes. 2. Lowland evergreen Valdivian Forest: Lapageria rosea-Aextoxicon punctatum community. 3. Lowland cold deciduous Valdivian Forest: Persea lingue-Nothofagus obliqua community, with Nothofagus alpina. 4. Flooded Forest & woodland: Temu divaricata-Myrceugenia exsucca community. 5. Montane evergreen humid Valdivian Forest: Nothofagus dombeyi-Eucryphia cordifolia community. 6. Montane evergreen hyperhumid zonal forest: Laurelia sempervirens-Weinmannia trichosperma community. 7. Montane cold deciduous humid forest: Nothofagus nitida communities in mosaic with: 7a. Edapho-xerophilous coniferous forest: Fitzroya cupressoides community, on sandy-stony podsoil soils. 7b. Coniferous domed peat bog: Pilgerodendron uviferum-Gaimardia australis community. 7c. Sphagnum magellanicum peat bog with Dacrydium fonckii. 7d. Subantarctic domed peat bog: Oreobolus obtusangulus-Donatia fascicularis community. 7e. Helophytic vegetation: Marsippospermum community. 7f. Aquatic vegetation: Scirpus inundatus communities. 8. Flooded cold deciduous woodland: Notohofagus antarctica communities. On marshy wet soils. 9. Upper Montane evergreen hyperhumid Valdivian Forest: Chrysosplenium valdivianum-Nothofagus dombeyi community. 10. Upper montane cold deciduous hyperhumid Valdivian woodland: Nothofagus pumilio communities. 11. High-montane cold deciduous hyperhumid Valdivian woodland: Nothofagus antarctica community. 12. High-montane pulvinate thorn shrubland & thicket: 12a Adesmia longipes-Empetrum rubrum community; in mosaic with: 12b Meadows: Elymus andinus-Hierochloe juncifolia community; 12c Helophytic vegetation: Carex spp. Communities. Graphic geobotanical interpretation based on our field transect data and cited references.

C.3. Temperate hyperoceanic magellanian forest geocomplex (Fig. 39) [Biogeography: Valdivian-Magellanian Region, Temperate Magellanian Province]. Representative type locality: Argentina-Chile transects synthesis, ca. 51°30'S. Altitude: 0–200 m. Known analogous distribution areas (homoplasyc geobiomes): S Chile, S Argentina. Bioclime: meso-suprathemperate hyperoceanic hyperhumid-humid. IUCN related units: “Oceanic cool temperate rainforests”. Refs.: Boelcke et al. (1985), Hildebrand-Vogel et al. (1990), Gajardo 1994; León et al. 1998; Amigo and Ramírez 1998; Collantes et al. (1999), Barrera et al. (2000), Promis et al. (2008), Luebert and Pliscoff (2006, 2022), Amigo and Rodríguez-Guitián (2011), Amigo et al. (2022a, b).
Figure 39. 

Temperate hyperoceanic magellanian forest geocomplex. 1. Coastal pioneer herbaceous vegetation: Apium australe-Senecio smithii communities. 2. Evergreen coastal-flooded woodland: Nothofagus antharctica community; and moss peatland: Sphagnum magellanicum communities. 3. Evergreen hyperoceanic woodland: Nothofagus betuloides communities. 4. Cold deciduous hyperoceanic montane woodland: Nothofagus pumilio communities. 5. High-montane hyperoceanic grassland: Bolax gummifera-Festuca gracillima community and alpine cryomorphic open vegetation: Adesmia parviflora-Perezia megalantha community. 6. Saxicolous temperate alpine vegetation: Leucheria hannii-Nassauvia lagascae community. 7. High-montane pulvinate thorn shrubland & thicket: Adesmia parviflora-Empetrum rubrum community. Graphic geobotanical interpretation based on Roig et al. (in Boelcke et al. 1985).

C.4. Temperate oceanic lowland woodland and grassland geocomplex (Fig. 40) [Biogeography: Pampean Region, Mesophytic Pampa Province]. Representative type locality: Samborombón-San Clemente del Tuyú transects synthesis, E Buenos Aires province, Argentina, ca. 36°05'S. Altitude: 20–65 m. Known analogous distribution areas (homoplasyc geobiomes): Central Eastern Argentina. Bioclime: oceanic thermo temperate pluviseasonal humid-subhumid. IUCN related units: “Temperate subhumid grasslands”, “Temperate woodlands”. Refs.: Cabrera (1976), Burkart et al. (1998, 1999), Josse et al. (2003, 2007), Sayre et al. (2008), Matteuci (2012), Martínez-Carretero et al. (2016), Oyarzábal et al. (2018), Navarro (2021).

Figure 40. 

Temperate oceanic lowland woodland and grassland geocomplex. 1. Thorn woodland & shrubland: Celtis tala-Geoffroea decorticans-Jodina rhombifolia communities. Remanents of Pampa zonal potential natural vegetation, on well-drained sandy soils (“LOMA”). 2. Not flooded Pampa grassland: Piptochaetium montevidense-Nassella neesiana communities. Medium-drained mesophytic soils (Gleyic Chernozems) (“SEMILOMA”). 3. Flooded Pampa grasslands: Danthonia montevidensis-Paspalum vaginatum communities. Wet hygrophytic soils (Stagnic chernozems) (“BAJO”). 4. Reedbed marshland: Schoenoplectus californicus communities. 5. Saline grassland & thicket: Spartina densiflora-Sarcocornia neei communities. Halophyllous lacustrine and palustrine vegetation of estuarine coastal marshes. Graphic geobotanical interpretation based on our field transect data and cited references.

C.5. Temperate lowland dry thorn woodland and grassland geocomplex (Fig. 41) [Biogeography: Pampean Region, Xerophytic Pampean Province (“Espinal”)]. Representative type locality: General Achá to Santa Rosa transect, La Pampa province, Argentina, ca. 36°33'S. Altitude: 510 m. Known analogous distribution areas (homoplasyc geobiomes): CE Argentina. Bioclime: thermo-temperate xeric dry. IUCN related units: “Seasonally dry temperate heaths and shrublands” “Temperate subhumid grasslands”. Refs.: Navarro et al. (1994d), Josse et al. (2003, 2007), Sayre et al. (2008), Lewis et al. (1985, 2009), Matteuci (2012), Martínez-Carretero et al. (2016), Oyarzábal et al. (2018), Navarro (2021).

Figure 41. 

Temperate lowland dry thorn woodland and grassland geocomplex. 1. Deciduous thorn woodland & shrubland: Celtis tala-Geoffroea decorticans communities. Hillsides well-drained sandy soils (Arenic Luvisols). 2. Phreatophytic deciduous thorn woodland & shrubland: Jodina rhombifolia-Prosopis caldenia communities. Flat alluvial soils with shallow water table (gleyic regosols). 3. Saline phreatophile shrubland: Cyclolepis genistoides-Plectrocarpa tetracantha community. Halophyllous vegetation on seasonally saturated to temporarily ponded soils with fluctuating shallow water tables (gleyic solonchak and sololonetz). 4. Salt flats wetland thicket: Sarcocornia neei-Heterostachys ritteriana community. Saline seasonally ponded-depressional soils (stagnic solonetz). Graphic geobotanical interpretation based on our field transect data and cited references.

D. Boreal (Austroboreal) geocomplex biomes

D.1. Austroboreal wet woodland & peatbog geocomplex (Fig. 42) [Biogeography: Valdivian-Magellanian Region, Boreal Austromagellanian Province]. Representative type locality: Isla Navarino, southern Chile, ca. 55°12'S. Altitude: 0–800 m. Known analogous distribution areas (homoplasyc geobiomes): S Chile, S Argentina. Bioclime: meso-supraboreal hyperoceanic humid-hyperhumid. IUCN related units: “Oceanic cool temperate rainforests”, “Cool temperate heathlands”. Refs.: Pisano (1983), Hildebrand-Vogel et al. (1990), Gajardo (1994), Donoso (1995), Collantes et al. (1999), Barrera et al. (2000), Luebert and Pliscoff (2006, 2022), Promis et al. (2008), Amigo and Rodríguez-Guitián (2011), Ramírez et al. (2004, 2014); Rivas-Martínez et al. (2015), Molina et al. (2016), Amigo et al. (2022a, b).

Figure 42. 

Austroboreal wet woodland & peatbog geocomplex 1. Mixed evergreen and deciduous coastal wet forest: Nothofagus betuloides-Nothofagus pumilio community and Nothofagus antharctica-Nothofagus betuloides community (in the most southern and western locations). Mesoboreal bioclimatic level (0–300 m) on coastal well-drained dystric soils. 2. Deciduous montane wet woodland and shrubland: Maytenus disticha-Nothofagus pumilio community. Supraboreal bioclimatic level (300–600 m) on hillside well-drained dystric soils. 3. Domed-cushion antartic peatbog: Astelia pumila-Donatia fascicularis community. Azonal oligotrophic histic soils on wet topographic depressions. 4. Pulvinate-cushion shrubland & thicket: Bolax bovei-Bolax gummifera-Abrotanella marginata communities. Oroboreal bioclimatic level (> 600 m). On high-montane steep slopes with rocky substrates. 5. Bunch-grassland boreal antartic steppe: Poa flabellata-Deschampsia laxa community. Graphic geobotanical interpretation based on Molina et al. (2016).

Discussion

The geobotanic landscape approach that we propose here to conceptualize the biome has not been explicitly contemplated by any previous author, especially with regard to integrating the contributions of European dynamic-catenal geobotanical phytosociology into the idea of biome.

It is necessary to highlight that our work is not floristic-phytosociological, since already in South America there are detailed regional or local works of this type, particularly in countries such as Colombia, Chile, Brazil or Argentina (see following paragraph). However, there is a lack of synthesis and integration that combines these important contributions in a series of spatial and altitudinal models that are generalized, comprehensive and comparative, and allow a global interpretative and predictive vision of the South American diversity. What we present in this work aims to contribute to achieve this goal.

Some related works have been carried out in several south American countries such as Colombia (e.g., Cleef 1980, 1981; Duivenvoorden and Lips 1995; Rangel et al. 1997, 2004, 2017; Minorta-Celys 2020), in Peru by Galán and collaborators (2004, 2006, 2009, 2011, 2015, 2020) or in Chile by Luebert and Gajardo (2001, 2005) or Luebert and Pliscoff (2017). However, their works are fundamentally floristic-phytosociological, defining plant associations or communities in the sense of the Braun-Blanquet methodology, but they do not contemplate a spatial-geographical integration on a landscape scale, except for some local phytotopographic profiles made by some of these authors, such as Galán et al (op cit.). Similarly, nor do they try to apply the geobotanical concepts of geocatena (geosigmetum) and sets of geocatenas for the understanding of repetitive sets of vegetation units in the landscape. Luebert and Pliscoff (2017) constructed longitudinal profiles of the Chilean vegetation types, stratified from north to south throughout the country. These vegetation profiles are also related to the work we present, but they differ in that, with few exceptions, they represent several chained or successive complexes along more than one bioclimate, physiography and biogeography. Likewise, these authors do not formalize or conceptually define criteria to spatially define and delimit the geocomplexes and do not explicitly relate their results to the bioma concept. Another proposal in South America that is somewhat related to ours is the extensive work by Morello et al. (2012) on the ecoregions and ecosystem complexes of Argentina, where the characteristic ecosystem patterns of each large natural area considered an ecoregion are described in detail. We agree with these authors in the idea that these repetitive sets of ecosystems are typical or differential of their ecoregions, but their approach is fundamentally descriptive and they do not formalize a conceptual framework for it. Additionally, interpretative graphic models are not formulated either, but rather the various environmental factors that coincide with the ecosystem complexes (geology, soils, etc.) are described as separate elements for each of them. Nor is there an explicit relationship of these complexes with the biome concept.

In general, we stated that the analogies between representative geocomplex biomes of each biogeographic region are very notable for the different types of ecosystems present in the geocomplex; while the floristic homologies are much smaller and only partial, depending on each group of biogeographic provinces, in relation to the centers of origin and dispersion of the flora.

The number of geocomplex biomes identified in South America shows a pattern of decline from the tropical to boreal macrobioclimate, and from north to south. This corresponds to the classic global latitudinal patterns of species diversity recognized by different authors, and also for South America (i.e., Cingolani et al. 2010; Antonelli and Sanmartín 2011; Qian and Son 2013); patterns that generally are related to global thermal and humidity gradients.

Moreover, our proposal for geocomplex biomes for South America, although coinciding in some respects with the IUCN proposal (Keith et al. 2020, 2022), differs substantially from it in several key conceptual aspects. For example, IUCN has a heterogeneous nomenclature and conceptual basis, particularly with no consistency or homogeneity in the IUCN GFS names assigned and their delimitation factors. Also, IUCN present detailed principles designed for a global ecosystem typology, but lack an objective, consistent and explicit protocol or keys to properly define, delimit and name the units. It is a difficult system to standardize and repeat, as the units and their mapping are based mainly on expert opinion. Furthermore, some relevant Neotropical biomes are not represented, e.g., the extensive woodlands and wooded or arboreal savannas of the Cerrado, and they do not explicitly follow any bioclimatic system. Furthermore, the IUCN proposal does not contemplate an explicit or conceptual landscape ecological approach.

Our framework can be applied using perhaps others classifications of bioclimate and biogeography, for example using Köppen’s climatic system (Köppen 1936; Beck et al. 2018) and Morrone’s biogeographic regionalization (Morrone 2001, 2006, 2014). To what extent employing the cited (but somewhat related) bioclimatic and biogeographic classification systems might impact the delimitation of gecomplexes remains to be seen and exceeds the scope of the present contribution.

Conclusions and main contributions

The successive application of biogeophysical criteria based mainly on the bioclimate, geomorphology, soils and vegetation, makes it possible to objectively differentiate the biomes considered from an integrated perspective at landscape scales.

In this sense, our work proposes a new and comprehensive approach to the biome concept based on the integration of dynamic-catenal geobotany and landscape ecology concepts, within a bioclimatic, geophysic and biogeographic homogeneous framework. The definition and identification of the geocomplex biome (geobiome) is based on observable or measurable criteria and variables, as a group of repetitively associated geocatenes related and interacting in the landscape. Further, our work provides for the first time thirty-three standardized ecosystem zonation models for all South America which graphically show the geocomplex biomes identified and characterized for the continent, grouped consistently into sixteen neotropical macrobiomes. However, there remains a need for additional surveys in areas that are poorly known or difficult to access, which may lead to an increase in the number of existing geocomplex biomes, as well as to specifications and adjustments of those already proposed. We expect that this approach will make geocomplex biomes a better and more precise basis for the development of integrated and holistic conservation strategies, much needed in a continent subjected to strong increasing threats and pressures.

Author contributions

G.N. designed the survey, provided the core data information and produced the figures, F.L. and J.A.M. contributed substantially to the conceptual writing and took part in shaping and adequacy of the proposal.

Acknowledgements

This research was partially supported by the Exact Sciences and Engineering Research Center (CICEI), Universidad Católica Boliviana “San Pablo”, Cochabamba, Bolivia.

References

  • Aguirre-Mendoza Z, Linares-Palomino R, Kvist LP (2006a) Especies leñosas y formaciones vegetales en los bosques estacionalmente secos de Ecuador y Perú. Arnaldoa 13: 324–350.
  • Aguirre-Mendoza Z, Kvist LP, Sánchez O (2006b) Bosques secos en Ecuador y su diversidad. In: Moraes M, Øllgaard RB, Kvist LP, Borchsenius F, Balslev H (Eds) Botánica Económica de los Andes Centrales. Universidad Mayor de San Andrés, La Paz, BO, 162–187.
  • Amigo FJ, Rodríguez-Guitián MA (2011) Bioclimatic and phytosociological diagnosis of the species of the Nothofagus genus (Nothofagaceae) in South America. International Journal of Geobotanical Research 1(1): 1–20. https://doi.org/10.5616/ijgr110001
  • Amigo J, Álvarez M, Flores-Toro L, Luebert F, Ramírez C, Rodríguez-Guitián M, San Martín C (2022a) Actualización del catálogo sintaxonómico de Chile. I. Clases confirmadas. International Journal of Geobotanical Research 11(2): 11–84.
  • Amigo J, Álvarez M, Flores-Toro L, Luebert F, Ramírez C, Rodríguez-Guitián M, San Martín C (2022b) Aportaciones a la sintaxonomía de Chile. International Journal of Geobotanical Research 11(2): 1–9.
  • Andrade D (2007) Estudos Fitogeográficos de Pernambuco. Anais da Academia Pernambucana de Ciência Agronômica 4: 243–274.
  • Avella A (2016) Los bosques de robles (Fagáceas) en Colombia: composición florística, estructura, diversidad y conservación. Ph.D. thesis, Universidad Nacional de Colombia, Bogotá, CO, 388 pp.
  • Aymard G, González V (2013) Los Bosques de Los Llanos de Venezuela: Aspectos de su estructura, composición florística y estado actual de conservación. In: Rangel JO (Ed.) La región de la Orinoquia de Colombia. [Colombia Diversidad Biótica XIV] Universidad Nacional de Colombia. Facultad de Ciencias, Instituto de Ciencias Naturales. Bogotá, CO, 533–622.
  • Barrera MD, Frangi JL, Richter L, Perdomo M, Pinedo L (2000) Structural and functional changes in Nothofagus pumilio forests along an altitudinal gradient in Tierra del Fuego, Argentina. Journal of Vegetation Science 11: 179–188. https://doi.org/10.2307/3236797
  • Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data 5: 180214. https://doi.org/10.1038/sdata.2018.214
  • Boelcke O, Moore DM, Roig FA (1985) Transecta Botánica de la Patagonia Austral. CONICET (Argentina), Royal Society (UK) e Instituto de la Patagonia (Chile), 733 pp.
  • Boixadera J, Poch RM, García-González MT, Vizcayno C (2003) Hydromorphic and clay-related processes in soils from the Llanos de Moxos (northern Bolivia). Catena 54: 403–424. https://doi.org/10.1016/S0341-8162(03)00134-6
  • Burkart SE, León RJC, Perelman SB, Agnusdei M (1998) The grasslands of the Flooding Pampa (Argentina): Floristic heterogeneity of plant communities of the southern Rio Salado basin. Coenosis 13: 17–27.
  • Burkart SE, Martín F, Garbulsky C, Ghersa JP, Guerschman P, Rolando JC, León M, Oesterheld JM, Paruelo J, Perelman SB (1999) Las comunidades potenciales del pastizal pampeano bonaerense. In: Oesterheld M, Aguiar C, Paruelo J (Eds) La heterogeneidad de la vegetación de los agroecosistemas. Un homenaje a Rolando León. Editorial Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, AR, 472 pp.
  • Cabido M, Carranza L, Acosta A, Páez S (1991) Contribución al conocimiento fitosociológico del Bosque Chaqueño Serrano en la provincia de Córdoba, Argentina. Phytocoenologia 19: 547–566. https://doi.org/10.1127/phyto/19/1991/547
  • Cabido M, Manzur A, Carranza ML, González-Albarracín C (1994) La vegetación y el medio físico del Chaco Árido en la provincia de Córdoba, Argentina Central. Phytocoenologia 24: 423–460. https://doi.org/10.1127/phyto/24/1994/423
  • Cabrera AL (1976) Regiones fitogeográficas argentinas. In: Kugler WF (Ed.) [Enciclopedia Argentina de Agricultura y Jardinería. Tomo 2 (2a edn.). Fascículo 1], Buenos Aires, AR, 1–85.
  • Camaripano-Venero B, Castillo A (2003) Catálogo de espermatófitas del bosque estacionalmente inundable del Río Sipapo, estado Amazonas, Venezuela. Acta Botanica Venezuelica 26(2): 125–229.
  • Castroviejo S, López G (1985) Estudio y descripción de las comunidades vegetales del ¨Hato El Frío¨ en los Llanos de Venezuela. Memorias de la Sociedad de Ciencias Naturales La Salle 45(124): 79–151.
  • Cingolani AM, Vaieretti AV, Gurvich DE, Giorgis MA, Cabido M (2010) Predicting alpha, beta and gamma plant diversity from physiognomic and physical indicators as a tool for ecosystem monitoring. Biological Conservation 143: 2570–2577. https://doi.org/10.1016/j.biocon.2010.06.026
  • Cleef AM (1980) Secuencia altitudinal de la vegetación de los páramos de la Cordillera Oriental de Colombia. Colombia Geografica 7(2): 50–59.
  • Cleef AM (1981) The Vegetation of the Páramos of the Colombian Cordillera Oriental. Mededelingen van het Botanisch Museum en Herbarium van de Rijksuniversiteit te Utrecht 481(1): 1–320.
  • Cleef AM, Rangel O, Salamanca S (2003) The Andean rain forests of the parque Los Nevados transect, Cordillera Central. In: Van der Hammen T, Dos-Santos A (Eds) [Estudios de Ecosistemas Tropandinos. Ecoandes 5: La Cordillera Central Colombiana transecto Parque Los Nevados], J. Cramer, Berlin-Stuttgart, DE, 79–142.
  • Cleef AM, Rangel JO, Arellano PH (2008) The paramo vegetation of the Sumapaz massif (Eastern Cordillera, Colombia) of the Sumapaz (massif Cordillera Oriental, Colombia). In: Van der Hammen T, Rangel JO, Cleef AM (Eds) La Cordillera Oriental Colombiana, Transecto Sumapaz. [Studies on Tropical Andean Ecosystems; No. 7] J. Cramer (BORNTRAEGER) Berlín-Stuttgart, DE, 799–914.
  • Collantes MB, Anchorena J, Cingolani AM (1999) The steppes of Tierra del Fuego: Floristic and growthform patterns controlled by soil fertility and moisture. Plant Ecology 140: 61–75. https://doi.org/10.1023/A:1009727629777
  • Correa HD, Ruiz SL, Arévalo LM [Eds] (2005) Plan de acción en biodiversidad de la cuenca del Orinoco – Colombia / 2005–2015 – Propuesta Técnica. Bogotá D.C.: Corporinoquia, Cormacarena, I.A.v. H, Unitrópico, Fundación Omacha, Fundación Horizonte Verde, Universidad Javeriana, Unillanos, WWF - Colombia, GTZ –Colombia, 273 pp.
  • Cowardin LM, Carte V, Golet FC, LaRoe ET (1979) Classification of wetlands and deepwater habitats of the United States. U.S. Department of the Interior Fish and Wildlife Service Office of Biological Services Washington, D.C. [Report no. 20240], 142 pp. https://doi.org/10.5962/bhl.title.4108
  • Cuatrecasas J (1934) Observaciones geobotánicas en Colombia. Trabajos del Museo Nacional de Ciencias Naturales Serie Botánica, ES 27: 5–114.
  • Cuatrecasas J (1958) Aspectos de la Vegetación Natural de Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales 10(40): 221–268.
  • Cuatrecasas J (1968) Páramo Vegetation and its Life Forms. In: Troll C (Ed.) Geoecology of Mountainous Regions of Tropical America. Coll. Geogr. (Bonn) 9: 163–186.
  • Dengler J, Jansen F, Glöckler F, Peet RK, De Cáceres M, Chytrý M, Ewald J, Oldeland J, Lopez-Gonzalez G, … Spencer N (2011) The Global Index of Vegetation‐Plot Databases (GIVD): a new resource for vegetation science. Journal of Vegetation Science 22: 582–597. https://doi.org/10.1111/j.1654-1103.2011.01265.x
  • Dinerstein E, Olson D, Joshi A, Vynne C, Burgess ND, Wikramanayake Hahn N, Palminteri S, Hedao P, … Saleem M (2017) An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. BioScience 67(6): 534–545. https://doi.org/10.1093/biosci/bix014
  • Díaz W, Rosales J (2006) Análisis florístico y descripción de la vegetación inundable de várzeas Orinoquenses en el Bajo Río Orinoco, Venezuela. Acta Botanica Venezuelica 29(1): 39–68.
  • Donoso C (1995) Bosques templados de Chile y Argentina. Variación, estructura y dinámica. Tercera edición. Editorial Universitaria, Santiago de Chile, 485 pp.
  • Duivenvoorden JF, Lips JM (1995) A land-ecological study of soils, vegetation, and plant diversity in Colombian Amazonia. [Tropenbos Series 12. The Tropenbos Foundation], Wageningen, NL, 438 pp.
  • Encarnación F (1985) Introducción a la flora y vegetación de la Amazonía Peruana: estado actual de los estudios, medio natural y ensayo de claves de determinación de las formaciones vegetales de la llanura Amazónica. Candollea 40: 237–252.
  • Encarnación F (1993) El bosque y las formaciones vegetales en la llanura amazónica del Perú. Alma Máter 6: 95–114.
  • Encarnación F, Zárate R (2007) Vegetación y zonificación ecológica del Departamento de Amazonas. Instituto De Investigaciones De La Amazonía Peruana IIAP, Gobierno Regional de Amazonas. Gerencia de Recursos Naturales y Gestión de Medio Ambiente, 40 pp.
  • Encarnación F, Zárate R, Mori TJM (2014) Zonificación Ecológica y Económica de la provincia de Alto Amazonas Departamento de Loreto. Vegetación. Instituto De Investigaciones De La Amazonía Peruana IIAP, Gobierno Regional de Amazonas. Gerencia de Recursos Naturales y Gestión de Medio Ambiente, 52 pp.
  • Entrocassi GS, Gavilán RG, Sánchez-Mata D (2020) Subtropical Mountain Forests of Las Yungas: Vegetation and Bioclimate. Geobotany Studies. Basics, Methods and Case Studies. Springer, 201 pp. https://doi.org/10.1007/978-3-030-25521-3
  • Faber-Langendoen D, Keeler-Wolf T, Meidinger D, Tart D, Hoagland B, Josse C, Navarro G, Ponomarenko S, Saucier J-P, … Comer P (2014) EcoVeg: a new approach to vegetation description and classification. Ecological Monographs 84: 533–561. https://doi.org/10.1890/13-2334.1
  • Faber-Langendoen D, Baldwin K, Peet RK, Meidinger D, Muldavin E, Keeler-Wolf T, Josse C (2018) The EcoVeg approach in the Americas: U.S., Canadian and International Vegetation Classifications. Phytocoenologia 48: 215–237. https://doi.org/10.1127/phyto/2017/0165
  • Faber-Langendoen D, Navarro G, Willner W, Keith DA, Liu C, Guo K, Meidinger D (2020) Perspectives on terrestrial biomes: The International Vegetation Classification. In: Goldstein MI, DellaSala DA (Eds) Encyclopedia of the World’s Biomes. Elsevier 1: 1–15. https://doi.org/10.1016/B978-0-12-409548-9.12417-0
  • FAO (1965) Soil Survey of the Llanos Orientales Colombia. Volume I. [General Report], Roma, 87 pp.
  • FAO IUSS Working Group WRB (2015) Base referencial mundial del recurso suelo 2014, Actualización 2015. Sistema internacional de clasificación de suelos para la nomenclatura de suelos y la creación de leyendas de mapas de suelos. Informes sobre recursos mundiales de suelos [Report no.106]. FAO, Roma, 203 pp.
  • FDGC Federal Geographic Data Committee (2013) Classification of wetlands and deepwater habitats of the United States. 2nd edn. Wetlands Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service [Report no. FGDC-STD-004-2013]. Washington DC, US, 91 pp.
  • Felfili JM, Eisenlohr PV, Melo MMRF, Andrade LA, Meira JAA [Eds] (2011) Fitossociologia do Brasil: Métodos e Estudos de Caso. Viçosa, Editora da Universidade Federal de Viçosa, BR, 41 pp.
  • Ferreira M, de Queiroz LP (2015) Floristic surveys of Restinga Forests in southern Bahia, Brazil, reveal the effects of geography on community composition. Rodriguésia 66(1): 51–73. https://doi.org/10.1590/2175-7860201566104
  • Forman RT, Godron M (1986) Landscape Ecology. Wiley, New York, US, 648 pp.
  • Forman RT (1997) Land mosaics. The ecology of landscapes and regions. Cambridge University Press, 632 pp.
  • Fuentes AF (2016) Flora y Vegetación leñosa de los bosques de los Andes en la Región Madidi, La Paz (Bolivia). Ph.D. thesis, Universidad Complutense de Madrid, ES.
  • Gajardo R (1994) La vegetación natural de Chile. Clasificación y distribución geográfica. Editorial Universitaria, Santiago, CL, 165 pp.
  • Galán A, Virginia M, Cáceres C (2002) Una aproximación sintaxonómica sobre la vegetación del Perú. Clases, Órdenes y Alianzas. Acta Botanica Malacitana 27: 75–103. https://doi.org/10.24310/abm.v27i0.7310
  • Galán A, González R, Morales B, Vicente-Orellana JA (2006) Datos sobre la Vegetación de los Llanos Occidentales del Orinoco (Venezuela). Acta Botanica Malacitana 31: 97–129. https://doi.org/10.24310/abm.v31i31.7124
  • Galán A, Linares E, Campos J, Vicente-Orellana JA (2009) Nuevas observaciones sobre la vegetación del sur del Perú. Del Desierto Pacífico al Altiplano. Acta Botanica Malacitana 34: 107–144. https://doi.org/10.24310/abm.v34i0.6904
  • Galán A, Linares E, Campos J, Vicente-Orellana JA (2011) Interpretación fitosociológica de la vegetación de las lomas del desierto peruano. Revista de Biología Tropical 59(2): 809–828.
  • Galán A, Sánchez I, Montoya J, Linares E, Campos J, Vicente JA (2015) La vegetación del norte del Perú: de los bosques a la Jalca en Cajamarca. Acta Botanica Malacitana 40: 157–190. https://doi.org/10.24310/abm.v40i0.2505
  • Galán A, Campos J, Linares E, Montoya J, Torres I, Vicente JA (2020) Phytosociological Study on Andean Rainforests of Peru, and a Comparison with the Surrounding Countries. Plants 2020 9: 1654. https://doi.org/10.3390/plants9121654
  • Gardi C, Angelini M, Barceló S, Comerma J, Cruz Gaistardo C, Encina Rojas A, Jones A, Krasilnikov P, Mendonça Santos Brefin ML, Ravina da Silva M [Eds] (2015) Soil Atlas of Latin America and the Caribbean. European Commission, Publications Office of the European Union, Luxembourg, LU, 176 pp.
  • Géhu JM, Rivas-Martínez S (1981) Notions fondamentales de phytosociologie [Basic notions of phytosociology]. In: Dierschke H (Ed.) Syntaxonomie (Rinteln 31. 3.–3.4.1980). Berichte der Internationalen Symposien der Internationalen Vereinigung für Vegetationskunde. Cramer, Vaduz, LI, 5–33.
  • Gerasimov IP (1946) V.V. Dokuchaev’s Doctrine of Natural Zones. Pochvovedenie 6: 353–360.
  • Giulietti AM, Bocage AL, Castro AJF, Gamarra-Rojas CFL, Sampaio VSB, Virginio JF, De Queiroz LP, Figueiredo MA, Nogueira MJ, … Harley M (2003) Diagnóstico da vegetação nativa do bioma Caatinga. Ministério do Meio Ambiente, Serviço Florestal Brasileiro. [Report no. MMA/PNUD/GEF/BRA/02/G31], Brasília/DF, BR, 44 pp.
  • Goebel K (1975) La vegetación de los páramos venezolanos. Acta Botánica Venezuelica, 10(1/4): 337–395.
  • Gómez J, Montes NE [compiladores] (2020) Mapa Geológico de Colombia en Relieve 2020. Escala 1:1 000 000. Servicio Geológico Colombiano, 2 hojas. Bogotá.
  • Guevara JR (2015) Propuesta de clasificación biogeográfica para los Llanos de Venezuela. Ph.D. thesis, Universidad de Valencia, ES, 385 pp.
  • Hofstede R, Segarra R, Mena R [Eds] (2003) Los Páramos del Mundo. Proyecto Atlas Mundial de los Páramos. Global Peatland Initiative/NC-IUCN/EcoCiencia. Quito, EC, 276 pp.
  • Huber O, Alarcón C (1988) Mapa de Vegetación de Venezuela, Ministerio del Ambiente y de los Recursos Naturales Renovables (MARNR), Missouri Botanical Garden. Caracas, Venezuela.
  • Huber O, Riina R [Eds] (1997) Glosario Fitoecológico de las Américas. Vol. I América del Sur: países hispanoparlantes. UNESCO, 500 pp.
  • Huber O, Oliveira-Miranda MA (2010) Ambientes terrestres de Venezuela.
  • IBGE - Instituto Brasileiro de Geografia e Estatística (2019) Províncias estruturais, compartimentos de relevo, tipos de solos e regiões fitoecologicas. Rio de Janeiro, BR, 179 pp.
  • Joly CA, Aidar MPM, Klink CA, McGrath DG, Moreira AG, Moutinho P, Nepstad DC, Oliveira AA, Pott A, … Sampaio EVSB (1999) Evolution of the Brazilian phytogeography classification systems: implications for biodiversity conservation. Ciência e Cultura 51(5/6): 331–348.
  • Josse C (2014) International vegetation classification standard: Macrogroups of South America. NatureServe, Arlington, US, 86 pp.
  • Josse C, Navarro G, Comer P, Evans R, Faber-Langendoen D, Fellows M, Kittel G, Menard S, Pyne M, … Teague J (2003) Ecological Systems of Latin America and the Caribbean: A Working Classification of Terrestrial Systems. NatureServe, Arlington, VA, 47 pp.
  • Josse C, Navarro G, Encarnación F, Tovar A, Comer P, Ferreira W, Rodríguez F, Saito J, Sanjurjo J, … Reátegui F (2007) Ecological Systems of the Amazon Basin of Peru and Bolivia. Clasification and Mapping. NatureServe. Arlington, Virginia, US.
  • Josse C, Cuesta F, Navarro G, Barrena V, Cabrera E, Chacón-Moreno E, Ferreira W, Peralvo M, Saito J, Tovar A (2009) Ecosistemas de los Andes del norte y centro. Bolivia, Colombia, Ecuador, Perú y Venezuela. Secretaría General de la Comunidad Andina, Lima, PE, 96 pp.
  • Junk W (1997) Structure and function of the large Central Amazonian River floodplains: Synthesis and discussion. In: Junk W (Ed.) The Amazonian Floodplain: ecology of a pulsing system ([Ecological Studies 126]. Springer, Berlin/Heidelberg, DE, 455–472. https://doi.org/10.1007/978-3-662-03416-3_23
  • Kalliola R, Puhakka M, Danjoy W [Eds] (1993) Amazonía Peruana. Vegetación húmeda tropical en el llano subandino. Proyecto Amazonía Universidad de Turku (PAUT) y Oficina Nacional de Evaluación de Recursos Naturales de Perú (ONERN). Jyväskylä, FL, 265 pp.
  • Keith DA, Ferrer-Paris JR, Nicholson E, Kingsford RT [Eds] (2020) The IUCN Global Ecosystem Typology 2.0: Descriptive profiles for biomes and ecosystem functional groups. Gland, Switzerland: IUCN. https://doi.org/10.2305/IUCN.CH.2020.13.en [accessed Feb 2023]
  • Keith DA, Ferrer-Paris JR, Nicholson E, Bishop MJ, Polidoro BA, Ramirez-Llodra E, Tozer MG, Nel JL, Mac Nally R, … Kingsford RT (2022) A function-based typology for Earth’s ecosystems. Nature 610: 513–528. https://doi.org/10.1038/s41586-022-05318-4
  • Köppen WP (1936) Das geographische System der Klimate. Gebrüder Borntraeger, Berlin, DE, 44 pp.
  • Latorre JP, Jaramillo O, Corredor LP, Arias DA (2014) Condición de las unidades ecobiogeográficas continentales y Sistema Nacional de Áreas Protegidas de Colombia. Parques Nacionales Naturales de Colombia. Ministerio de Ambiente. Bogotá, CO, 230 pp.
  • León RJC, Bran D, Collantes J M, Paruelo J y Soriano A (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral 8: 123–141.
  • Lewis JP, Collantes MB, Pire EF, Carnevale NJ, Boccanelli SI, Stofella SL, Prado DE (1985) Floristic groups and plant communities of southeastern Santa Fe, AR. Vegetatio 60: 67–90. https://doi.org/10.1007/BF00040350
  • Lewis JP, Noetinger S, Prado DE, Barberis M (2009) Woody vegetation structure and composition of the last relicts of Espinal vegetation in subtropical Argentina. Biodiversity and Conservation 18: 3615–3628. https://doi.org/10.1007/s10531-009-9665-8
  • Loidi J, Navarro G, Vynokurov D (2022) Climatic definition of the world’s terrestrial biomes. Vegetation Classification and Survey 3: 231–271. https://doi.org/10.3897/VCS.86102
  • López O (1984) Formaciones Vegetales del Chaco Paraguayo. Comisión Nacional de Desarrollo del Chaco. [OEA. Serie de Información Básica 2]. Asunción, PY, 34 pp.
  • López JA, Little EL, Ritz GF, Rombold JS, Hahn W J (1987) Arboles comunes del Paraguay: Ñande Yvyra Mata Kuera. Ed. Cuerpo de Paz, Asunción, PY, 416 pp.
  • Lorenzi H (2008) Árvores brasileiras vol. O1 (5ª edn.). Instituto Plantarum de Estudos da Flora. Sao Paulo, BR, 384 pp.
  • Lorenzi H (2009) Árvores brasileiras vol. O2 (3ª edn.). Instituto Plantarum de Estudos da Flora. Sao Paulo, BR, 384 pp.
  • Luebert F, Gajardo R (2001) Vegetación de los Andes áridos del norte de Chile. Lazaroa 21: 111–130.
  • Luebert F, Pliscoff P (2017) Sinopsis bioclimática y vegetacional de Chile. Edit. Universitaria, Santiago de Chile, CL, 316 pp.
  • Luebert F, Pliscoff P (2006) Los límites del clima mediterráneo en Chile. Chagual 4: 64–69.
  • Luebert F, Pliscof P (2022) The vegetation of Chile and the EcoVeg approach in the context of the International Vegetation Classification project. Vegetation Classification and Survey 3: 15–28. https://doi.org/10.3897/VCS.67893
  • Luteyn JL [Ed.] (1999) Páramos: A cheklist of plant diversity, geographical distribution, and botanical literature. [Memoirs of The New York Botanical Garden 84]. The New York Botanical Garden Press, Bronx, US, 278 pp.
  • Macintyre PD, Mucina L (2021) The biomes of Western Australia: a vegetation-based approach using the zonality/ azonality conceptual framework. New Zealand Journal of Botany 60(4): 354–376. https://doi.org/10.1080/0028825X.2021.1890154
  • MAE (2012) Mapa de Vegetación del Ecuador Continental. Ministerio del Ambiente, Agua y Transición Ecológica del Ecuador. EC.
  • Marques MCM, Menezes S, Liebsch D (2015) Coastal plain forests in southern and southeastern Brazil: ecological drivers, floristic patterns and conservation status. Brazilian Journal of Botany 38(1): 1–18. https://doi.org/10.1007/s40415-015-0132-3
  • Marquet PA, Bozinovic F, Bradshaw GA, Cornelius CC, González H, Gutiérrez JR, Hajek ER, Lagos JA, López-Cortés F, … Jaksic FM (1998) Los ecosistemas del Desierto de Atacama y área Andina adyacente. Revista Chilena de Historia Natural 71: 593–617.
  • Martínez-Carretero E, Faggi AM, Fontana AL, Aceñolaza P, Gandullo R, Cabido M, Iriarte D, Prado D, Roig FA, Eskuche U (2016) Prodromus Sinsistemático de la República Argentina y una breve introducción a los estudios fitosociológicos. Boletín de la Sociedad Argentina de Botánica 51(3): 469–549. https://doi.org/10.31055/1851.2372.v51.n3.15392
  • Matteucci S (2012) Ecorregión Espinal. In: Morello J, Matteucci SD, Rodríguez AF, Silva M (Eds) capítulo 11, Ecorregiones y complejos ecosistémicos argentinos. Buenos Aires, AR, 773 pp.
  • Mereles F y Degen R (1994) Contribución al estudio de la flora y la vegetación del Chaco Boreal Paraguayo. Rojasiana 1(2): 36–38.
  • Mereles F y Degen R (1998) Formaciones Vegetales del Chaco Boreal Paraguayo. [Proyecto Sistema Ambiental del Chaco, tomo II: Investigaciones especiales]. Asunción, PY, 76–87.
  • Milne G (1935) Some suggested units of classification and mapping particularly for East African soils. Soil Research 4: 183–198.
  • Minorta-Cely V (2020) La vegetación de la Orinoquía colombiana: riqueza, diversidad y conservación. Ph.D. thesis, Universidad nacional de Colombia, Bogotá, CO, 359 pp.
  • Molina JA, Lumbreras A, Benavent-González A, Rozzi R, García-Sancho L (2016) Plant communities as bioclimate indicators on Isla Navarino, one of the southernmost forested areas of the world. Gayana Botanica 73(2): 391–401. https://doi.org/10.4067/S0717-66432016000200391
  • Morales T, Castillo A (2005) Catálogo Dendrológico comentado del bosque ribereño de la confluencia de los rios Cuao-Sipapo (Estado Amazonas, Venezuela). Acta Botanica Venezuelica 28(1): 1–40.
  • Morello J, Matteucci S, Rodríguez A (2012) Ecorregiones y complejos ecosistémicos argentinos. Buenos Aires, AR, 773 pp.
  • Morrone JJ (2001) Biogeografía de América Latina y el Caribe. Manuales & Tesis SEA. Zaragoza, ES, 152 pp.
  • Morrone JJ (2006) Biogeographic areas and transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistic analyses of the entomofauna. Annual Review of Entomology 51: 467–494. https://doi.org/10.1146/annurev.ento.50.071803.130447
  • Mucina L, Bültmann H, Dierßen K, Theurillat J-P, Raus T, Čarni A, Šumberová K, Willner W, Dengler J, … Tichý L (2016) Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science 19 (suppl. 1): 3–264. https://doi.org/10.1111/avsc.12257
  • Myers AA, Giller PS [Eds] (1988) Analytical Biogeography. An integrated approach to the study of animal and plant distributions. Chapman and Hall, London, UK, 578 pp.
  • Navarro G (1993) Vegetación de Bolivia: el Altiplano meridional. Rivasgodaya 7: 69–98.
  • Navarro G (2004) Mapa de Vegetación del Parque Nacional y Área Natural de Manejo Integrado “KAA-IYA” del Gran Chaco. CABI- WCS-USAID. Editorial FAN. Santa Cruz de la Sierra, BO, 42 pp. [+ l map]
  • Navarro G (2005) Unidades de vegetación de la Reserva de Biosfera del Chaco Paraguayo. In: D. I. Rumiz y L. Villalba (Eds) Unidades Ambientales de la Reserva de Biosfera del Chaco Paraguayo, capítulo 2. WCS y F.DeSdelChaco. Santa Cruz de la Sierra, BO, 25–50.
  • Navarro G (2011) Clasificación de la vegetación de Bolivia. Editorial Centro de Ecología Difusión Simón I. Patiño, Santa Cruz de la Sierra, BO, 620 pp.
  • Navarro G (2021) Expediciones del Prof. Salvador Rivas-Martínez donde participó Gonzalo Navarro Sánchez. Primera parte: Argentina, Chile y Venezuela. Global Geobotany 5(2): 1–20.
  • Navarro G, Arrázola S, Antezana C, Saravia E, Atahuachi M (1996) Series de vegetación de los valles internos de los Andes de Cochabamba (Bolivia). Revista Boliviana de Ecología y Conservación Ambiental 1(1): 3–20.
  • Navarro G, Maldonado M (2002) Geografía ecológica de Bolivia. Vegetación y ambientes acuáticos. Ed. Centro de Ecología Simón I. Patiño, Cochabamba, BO, 719 pp.
  • Navarro G, Rivas-Martínez S (2005) Datos sobre la fitosociología del norte de Chile: la vegetación en un transecto desde San Pedro de Atacama al volcán Licancabur (Antofagasta, II Región). Chloris Chilensis 8(2). http://www.chlorischile.cl [accessed 20 Feb 2023]
  • Navarro G, Ferreira W (2007) Mapa de Vegetación de Bolivia. Escala 1: 250000. The Nature Conservancy (TNC) y Rumbol, s.r.l. Edición en CD-ROM. [ISBN 978-99954-0-168-9]
  • Navarro G, Molina JA, Agostinelli E, Lumbreras A, Ferreira W (2013) Towards an ecological classification of flooded savannas in Beni (Bolivia). Acta Botanica Gallica 157(2): 265–273. https://doi.org/10.1080/12538078.2010.10516204
  • Navarro G, Molina JA (2021) A novel biome concept and classification system based on bioclimate and vegetation – a Neotropical assay. Vegetation Classification and Survey 2: 159–175. https://doi.org/10.3897/VCS/2021/64759
  • Oliveira J, Molina JA, Navarro G (2022) BOVEDA, the Bolivian Vegetation Ecology Database: first stage, the Chacoan forests. Vegetation Classification and Survey 3: 191–197. https://doi.org/10.3897/VCS.84418
  • Oyarzábal M, Clavijo J, Oakley L, Biganzoli F, Tognetti P, Barberis I, Maturo HM, Aragón R, Campanello PI, … León RJC (2018) Unidades de Vegetación de Argentina. Ecología Austral 28: 40–63. https://doi.org/10.25260/EA.18.28.1.0.399
  • Peyre G (2015) Diversidad de plantas y vegetación del Páramo Andino. Ph.D. thesis, Universidad de Barcelona (ES) and Universidad de Aarhus (DK).
  • Perel'man AI (1960) Geochemical Principles of Landscape Classification. Vestnik Moskovskogo Universiteta, seriya geografiya 4: 3–12. [RU]
  • Pinto JH, Rangel O (2010) La vegetación paramuna de la cordillera Occidental colombiana I: Las formaciones zonales. In: Rangel JO (Ed.) Colombia Diversidad Biótica X: Cambio global (natural) y climático (antrópico) en el páramo colombiano. Instituto de Ciencias Naturales, Universidad Nacional de Colombia. Bogotá, CO, 181–287.
  • Pinto R, Luebert F (2009) Datos sobre la flora vascular del desierto costero de Arica y Tarapacá, Chile, y sus relaciones fitogeográficas con el sur de Perú. Gayana Botánica 66: 28–49. https://doi.org/10.4067/S0717-66432009000100004
  • Pisano E (1983) The Magellanic tundra complex. In: Gore AJP (Ed.) Mires: swamp, bog, fen and moor. Ecosystems of the world. Vol. 4B. Elsevier, Amsterdam, NL, 295–329.
  • Pott A, Pott VJ (1997) Plants of Pantanal. Brasília: Embrapa, BR, 320 pp.
  • Pouilly M, Beck SG, Moraes M, Ibáñez C (2004) Diversidad biológica en la llanura de inundación del Río Mamoré. Importancia ecológica de la dinámica fluvial. Centro de Ecología Simón I. Patiño. Santa Cruz, BO, 383 pp.
  • Promis A, Cruz G, Reif A, Gartner S (2008) Nothofagus betuloides (Mirb.) Oerst. 1871 (Fagales: Nothofagaceae) forests in southern Patagonia and Tierra del Fuego. Anales del Instituto de la Patagonia 36: 53–67. https://doi.org/10.4067/S0718-686X2008000100005
  • Pulgar I, Izco J, Jadán O (2010) Flora selecta de los pajonales de Loja (Ecuador). Ediciones Abya-Yala. Quito, EC, 168 pp.
  • Queiroz EP, Pousada H, Barros MJ (2017) Flora fanerogâmica das restingas. In: Litoral Norte da Bahia: caracterização ambiental, biodiversidade e conservação. EDUFBA.
  • Qian H, Song J-S (2013) Latitudinal gradients of associations between beta and gamma diversity of trees in forest communities in the New World. Journal of Plant Ecology 6: 12–18. https://doi.org/10.1093/jpe/rts040
  • Ramírez C, San Martín C, San Martín J, Villaseñor R (2004) Comparación fitosociológica de los bosques de Belloto (Beilschmiedia, Lauraceae) en Chile central. Bosque 25(1): 69–85. https://doi.org/10.4067/S0717-92002004000100006
  • Ramírez C, San Martín C, Vidal O, Pérez Y, Valenzuela J, Solís JL, Toledo G (2014) Tundra subantártica en la Isla Grande de Chiloé, Chile: Flora y vegegtación turbosa de campañas. Anales Instituto Patagonia (Chile) 42(2): 17–37. https://doi.org/10.4067/S0718-686X2014000200002
  • Rangel JO, Franco P (1985) Observaciones fitoecológicas en varias regiones de vida de la Cordillera Central de Colombia. Caldasia 14(67): 211–249.
  • Rangel JO, Lowy PD, Aguilar M (1997) Colombia. Diversidad Biótica II. Tipos de Vegetación en Colombia. Editorial Guadalupe, Universidad Nacional de Colombia. Santa Fé de Bogotá, CO, 436 pp.
  • Rangel JO [Ed.] (2000) Colombia. Diversidad Biótica III. La región de vida paramuna. Editorial Unibiblos, Universidad Nacional de Colombia. Bogotá, CO, 902 pp.
  • Rangel JO [Ed.] (2004) Colombia Diversidad Biótica IV. El Chocó biogeográfico/Costa pacífica. Universidad Nacional de Colombia, Unidad de Monitoreo y Modelaje - CBC-Andes - Conservación Internacional. Bogotá, CO, 769–815.
  • Rangel JO [Ed.] (2008) Colombia. Diversidad Biótica VII. Vegetación, palinología y paleoecología de la Amazonía colombiana. Arfo Editores. Universidad Nacional de Colombia. Bogotá, CO, 424 pp.
  • Rangel JO, Pinto JH (2012) Colombian Páramo Vegetation Database (CPVD) – the database on high Andean paramo vegetation in Colombia. Biodiversity & Ecology 4: 275–286. https://doi.org/10.7809/b-e.00084
  • Rangel JO [Ed.] (2017) Colombia Diversidad Biótica XV. Los bosques de robles (Fagaceae) en Colombia. Composición florística, estructura, diversidad y conservación. Universidad Nacional de Colombia - Instituto de Ciencias Naturales, Bogotá, CO, 311 pp.
  • Ribeiro JF, Teles M (1998) Fitofisionomias do Bioma Cerrado. In: Sano SM, Almeida SP (Eds) Cerrado: Ambiente e Flora Planaltina. EMBRAPA, CPAC. Sao Paulo, BR.
  • Rivas-Martínez S, Rivas Sáenz S, Penas A (2011a) Worldwide bioclimatic classification system. Global Geobotany 1: 1–634.
  • Rivas Martínez S, Navarro G, Penas A, Costa M (2011b) Biogeographic Map of South America. A preliminary survey. International Journal of Geobotany 1: 21–40. https://doi.org/10.5616/ijgr110002
  • Rivas-Martínez S, Penas A, Del Río S, Rivas-Sáenz S, García-Sancho L (2015) New bioclimatic antarctic data variants and thermotypes. International Journal of Geobotanical Research 5: 61–63.
  • Rizzini CT (1979) Tratado fitogeográfico do Brasil, aspectos sociológicos e florísticos. 2o. vol. EDUSP. SP, BR.
  • Rodal MJN, Sampaio EVSB (2002) A vegetação do bioma caatinga. In: Sampaio EVSB, Giulietti AM, Gamarra-Rojas CFL (Eds) Vegetação e flora das caatingas. APNE / CNIP, Recife, PE, BR, 11–24.
  • Rodríguez N, Armenteras D, Morales M, Romero M (2006) Ecosistemas de los Andes colombianos. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá, CO, 154 pp.
  • Roig FA (1972) Bosquejo fisonómico de la vegetación de la provincia de Mendoza. Boletín de la Sociedad Argentina de Botánica 13: 49–80.
  • Roig FA, Anchorena J, Dollenz O, Faggi AM, Méndez E (1985) Las comunidades vegetales de la Transecta Botánica de la Patagonia Austral. Primera parte: la vegetación del área continental. In: Boelcke O, Moore DM, Roig FA (Eds) Transecta Botánica de la Patagonia Austral. CONICET (Argentina), Royal Society (UK) e Instituto de la Patagonia (Chile), 350–456.
  • Roig FA, Martínez Carretero E, Méndez E (1996) Mapa de Vegetación de la Provincia de Mendoza. Instituto Argentino de Investigaciones de las Zonas Áridas - CRICYT, Mendoza, AR.
  • Romero M, Galindo G, Otero J, Armenteras D (2004) Ecosistemas de la Cuenca del Orinoco Colombiano. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt. Bogotá, CO, 189 pp.
  • Rundel PW, Dillon MO, Palma B, Mooney HA, Gulmon SL, Ehleringer JR (1991) The phytogeography and ecology of the coastal Atacama and Peruvian deserts. Aliso 13: 1–49. https://doi.org/10.5642/aliso.19911301.02
  • Safont E (2015) Flora and vegetation of the Guayana highlands: past, dynamics, global warming and conservation guidelines. Ph.D.thesis, Universidad de Barcelona, ES.
  • Salo R, Hakkinen I, Makinen Y, Miemela PM, Puhakka M, Coley P (1986) River dynamics and the diversity of Amazon lowland forest. Nature 322: 254–258. https://doi.org/10.1038/322254a0
  • Sarmiento G, Monasterio M (1971) Ecología de las Sabanas de la América Tropical. Análisis macro ecológico de los llanos de Calabozo, Venezuela. Cuadernos Geográficos N° 4, Universidad de los Andes, Facultad de Ciencias Forestales, Escuela de Geografía. Mérida, VE.
  • Sayre R, Bow J, Josse C, Sotomayor L, Touval J (2008) Terrestrial ecosystems of South America. In: Campbell C, Jones KB, Smith JH (Eds) North America landcover summit-a special issue of the Association of American Geographers. Association of American Geographers, Washington DC, US, 131–152.
  • Schmithüsen J (1959) Allgemeine Vegetationsgeographie. Gruyter, Berlin, DE, 279 pp.
  • SERNAGEOMIN (2003) Mapa Geológico de Chile: versión digital. Servicio Nacional de Geologíay Minería, Publicación Geológica Digital, No. 4 (CD-ROM, versión1.0, 2003). Santiago, CL.
  • Sieben EJJ (2019) Zonal and azonal vegetation revisited: How is wetland vegetation distributed across different zonobiomes. Austral Ecology 44: 449–460. https://doi.org/10.1111/aec.12679
  • Sierra R [Ed.] (1999) Propuesta preliminar de un Sistema de Clasificación de Vegetación para el Ecuador Continental. Proyecto INEFAN/GEF y Ecociencia. Quito, EC, 194 pp.
  • Silva JSV, Abdon MM (1998) Delimitação do Pantanal brasileiro e suas sub-regiões. Pesquisa Agropecuária Brasileira 33 (número especial): 1703–1711.
  • Steege H, Lilwah R, Ek R, van der Hout P, Thomas R, van Esssen J, Jetten V (1999) Composition and diversity of the rainforest in Central Guyana. Tropenbos-Guyana Report 99-2.
  • Stehman JR [Ed.] (2009) Plantas da Floresta Atlântica. Rio de Janeiro: Jardim Botânico do Rio de Janeiro, BR, 516 pp.
  • Sukachev V, Dylis N (1964) Fundamentals of forest biogeocenology. Oliver & Boyd, Edinburgh, UK, 672 pp.
  • Tüxen R (1979) Sigmeten und Geosigmeten, ihre Ordnung und ihre Bedeutung für Wissenschaft, Naturschutz und Planung. In: Schmithüsen J (Ed.) Biogeographica 16, Landscape Ecology Landschaftsforschung und Ökologie, Dr. W. Junk B.V., Publishers, The Hague-Boston-London, 79–92. https://doi.org/10.1007/978-94-009-9619-9_7
  • Urrego LE (1997) Los bosques inundables del medio Caquetá: caracterización y sucesión. In: Saldarriaga JG, van der Hammen T (Eds) Estudios de la Amazonía Colombiana vol. XIV. Tropenbos-Colombia, 335 pp.
  • Usma JS, Trujillo F, Naranjo LG [Eds] (2022) Diversidad biológica y cultural del departamento de Guainía. Gobernación de Guainía, WWF Colombia, Corporación para el Desarrollo Sostenible del Norte y el Oriente Amazónico - CDA & Instituto Amazónico de Investigaciones Científicas SINCHI. Bogotá, CO, 250 pp.
  • Van der Hammen T [Ed.] (1995) La Cordillera Central Colombiana Transecto Parque Los Nevados. [Studies on Tropical Andean ecosystems 4]. J. Cramer, Berlin, Stuttgart, DE, 613 pp.
  • Van der Hammen T (2003) Ecosistemas zonales en los flancos oeste y este de la Cordillera Central Colombiana. In: Van der Hammen T, Dos Santos AG (Eds) La Cordillera Central Colombiana. Transecto Parque Los Nevados V [Estudios de Ecosistemas Tropandinos]. J. Cramer, Berlin, Stuttgart, DE, 503–545.
  • Van der Hammen T, Rangel O, Cleef AM (2005) Ecoandes Project: La Cordillera Occidental colombiana, transecto Tatamá. [Studies on Tropical Andean ecosystems 6]. J. Cramer, Berlin, Stuttgart, DE, 972 pp.
  • Vega AS, Rúgolo Z (2013) Lectotypifications in taxa of the genera Calamagrostis, Deyeuxia, and Digitaria (Poaceae). Gayana Botanica 70(1): 31–35.
  • Veloso HP, Rangel ALR, Lima JCA (1991) Classifi cação da vegetação brasileira, adaptada a um sistema universal. IBGE, Rio de Janeiro, BR, 123 pp. https://biblioteca.ibge.gov.br [accessed Feb 2023]
  • Villaseñor R, Serey I (1981) Estudio fitosociológico de la vegetación del Cerro La Campana (Parque Nacional La Campana), en Chile central. Istituto botánico Università di Pavia. Laboratorio di botanica [Atti Ist. Bot. Lab. Crittog. Univ. Pavia], IT, (6)14: 69–91.
  • Walter H (1954) Klimax und zonale Vegetation. In: Janchen E (Ed.) Festschrift für Erwin Aichinger zum 60. Geburtstag. Springer, Wien, AT, 144–150.
  • Walter H (1970) Vegetationszonen und Klima. Ulmer, Stuttgart, DE, 382 pp.
  • Walter H (1976) Die ökologischen Systeme der Kontinente (Biogeosphäre). Prinzipien ihrer Gliederung mit Beispielen. Fischer, Stuttgart, DE, 131 pp.

E-mail and ORCID

login to comment